Complementary Study Based on DFT of Optical and Electronic Properties of New Copolymer PVK-F8T2
Abstract
:1. Introduction
2. Experimental and Theoretical Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moliton, A.; Antony, R.; Troadec, D.; Ratier, B. Ion beam assisted deposition of organic molecules: A physical way to realize OLED structures. Comptes Rendus l’Académie Sci. Ser. IV-Phys. 2000, 1, 437–446. [Google Scholar] [CrossRef]
- Deng, X.-Y.; Yu, D.X. Light-Emitting Devices with Conjugated Polymers. Int. J. Mol. Sci. 2011, 12, 1575–1594. [Google Scholar] [CrossRef]
- Witkowska, E.; Wiosna-Salyga, G.; Glowacki, I.; Ke, T.-H.; Malinowski, P.; Heremans, P. Effect of TADF Assistance on Performance Enhancement in Solution Processed Green Phosphorescent OLEDs. Polymers 2021, 13, 1148. [Google Scholar] [CrossRef]
- Seo, D.-B.; Kim, S.; Gudala, R.; Challa, K.K.; Hong, K.; Kim, E.-T. Synthesis and organic solar cell application of RNA-nucleobase-complexed CdS nanowires. Sol. Energy 2020, 206, 287–293. [Google Scholar] [CrossRef]
- Chibani, A.; Gauthier, R.; Pinard, P.; Andonov, P. Etude de la texture des rubans EPR de silicium polycristallin photovoltaïque. J. Cryst. Growth 1991, 113, 681–690. [Google Scholar] [CrossRef]
- Fahrenbruch, A.L.; Bube, R.H.; D’Aiello, R.V. Fundamentals of Solar Cells (Photovoltaic Solar Energy Conversion). J. Sol. Energy Eng. 1984, 106, 497–498. [Google Scholar] [CrossRef] [Green Version]
- Liatard, E.; Akrouf, S.; Bruandet, J.; Fontenille, A.; Glasser, F.; Stassi, P.; Chan, T.U. Detection de produits de fission a l’aide de cellules photovoltaiques. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1988, 267, 231–234. [Google Scholar] [CrossRef]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Deng, S.; Zhao, P.; Dai, Y.; Huang, B.; Hu, A. Synthesis of soluble conjugated polymeric nanoparticles through heterogeneous Suzuki coupling reaction. Polymers 2015, 64, 216–220. [Google Scholar] [CrossRef]
- Akkuratov, A.V.; Susarova, D.K.; Mukhacheva, O.A.; Troshin, P.A. Design of highly soluble PCDTBTBT-type conjugated polymers for organic solar cells. Mendeleev Commun. 2016, 26, 248–250. [Google Scholar] [CrossRef]
- Guo, X.; Baumgarten, M.; Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38, 1832–1908. [Google Scholar] [CrossRef]
- Burroughes, J.H.; Bradley, D.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burns, P.L.; Holmes, A.B. Light-emitting diodes based on conjugated polymers. Nat. Cell Biol. 1990, 347, 539–541. [Google Scholar] [CrossRef]
- Thompson, B.C.; Fréchet, J.M.J. Polymer–Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 2008, 47, 58–77. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kim, J.-K.; Yoon, Y.-S. Performance Improvement of Organic Light Emitting Diodes Using Poly(N-vinylcarbazole) (PVK) as a Blocking Layer. Chin. J. Chem. 2010, 28, 115–118. [Google Scholar] [CrossRef]
- Uemura, T.; Uchida, N.; Asano, A.; Saeki, A.; Seki, S.; Tsujimoto, M.; Isoda, S.; Kitagawa, S. Highly Photoconducting π-Stacked Polymer Accommodated in Coordination Nanochannels. J. Am. Chem. Soc. 2012, 134, 8360–8363. [Google Scholar] [CrossRef] [PubMed]
- Gordon, K.C.; Walsh, P.J.; McGale, E.M. Electroluminescence from PVK-based polymer blends with metal complex dyes. Curr. Appl. Phys. 2004, 4, 331–334. [Google Scholar] [CrossRef]
- Rodríguez-Mas, F.; Ferrer, J.; Alonso, J.; de Ávila, S.F.; Valiente, D. Reduced Graphene Oxide Inserted into PEDOT:PSS Layer to Enhance the Electrical Behaviour of Light-Emitting Diodes. Nanomaterials 2021, 11, 645. [Google Scholar] [CrossRef] [PubMed]
- Caruso, U.; Diana, R.; Tuzi, A.; Panunzi, B. Novel Solid-State Emissive Polymers and Polymeric Blends from a T-Shaped Benzodifuran Scaffold: A Comparative Study. Polymers 2020, 12, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.; Han, B.; Fang, T.; Shan, Q.; Song, J. Flat, Luminescent, and Defect-Less Perovskite Films on PVK for Light-Emitting Diodes with Enhanced Efficiency and Stability. ACS Appl. Electron. Mater. 2020, 2, 3530–3537. [Google Scholar] [CrossRef]
- Elloh, V.; Mishra, A.K.; Dodoo-Arhin, D.; Abavare, E.K.; Gebreyesus, G.; Nyankson, E.; Efavi, J.; Onwona-Agyeman, B.; Yaya, A. Structural and Electronic properties of PVK/C60 Nanoheterostructure interfaces-A DFT Approach. Surf. Interfaces 2020, 20, 100556. [Google Scholar] [CrossRef]
- Levermore, P.A.; Jin, R.; Wang, X.; De Mello, J.C.; Bradley, D.D.C. Organic Light-Emitting Diodes Based on Poly(9,9-dioctylfluorene-co-bithiophene) (F8T2). Adv. Funct. Mater. 2009, 19, 950–957. [Google Scholar] [CrossRef]
- Garcia-Basabe, Y.; Yamamoto, N.A.D.; Roman, L.S.; Rocco, M.L.M. The effect of thermal annealing on the charge transfer dynamics of a donor–acceptor copolymer and fullerene: F8T2 and F8T2:PCBM. Phys. Chem. Chem. Phys. 2015, 17, 11244–11251. [Google Scholar] [CrossRef]
- Wu, M.; Hou, S.; Yu, X.; Yu, J. Recent progress in chemical gas sensors based on organic thin film transistors. J. Mater. Chem. C 2020, 8, 13482–13500. [Google Scholar] [CrossRef]
- Mbarek, M.; Almoneef, M.; ben Saleh, Y.; Alimi, K. Organic optoelectronic copolymer involving PVK and F8T2: Synthesis and characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 252, 119509. [Google Scholar] [CrossRef]
- Benchaabane, A.; Ben Hamed, Z.; Telfah, A.; Sanhoury, M.A.; Kouki, F.; Zellama, K.; Bouchriha, H. Effect of OA-ZnSe nanoparticles incorporation on the performance of PVK organic photovoltaic cells. Mater. Sci. Semicond. Process. 2017, 64, 115–123. [Google Scholar] [CrossRef]
- Bakour, A.; Geschier, F.; Baitoul, M.; Mbarek, M.; El-Hadj, K.; Duvail, J.-L.; Lefrant, S.; Faulques, E.; Massuyeau, F.; Wery-Venturini, J. Effects of single-walled carbon nanotubes on the optical and photo-conductive properties of their composite films with regio-regular poly(3-hexylthiophene). Mater. Chem. Phys. 2014, 143, 1102–1110. [Google Scholar] [CrossRef]
- Cauquis, G.; Cognard, J.; Serve, D. Les proprietes electrochimiques des diphenylamines et de leurs produits d’oxydation en milieu organique—I: Generalites et cas des N,N′-diarylbenzidines. Electrochim. Acta 1975, 20, 1011–1017. [Google Scholar] [CrossRef]
- Rayne, S.; Forest, K. Computational note on a G4MP2 study into the gas phase enthalpies of formation and isomerization for the (n=1–6) isomers. J. Mol. Struct. Theochem. 2010, 948, 111–112. [Google Scholar] [CrossRef]
- Mirali, M.; Jafariazar, Z.; Mirzaei, M. Loading Tacrine Alzheimer’s Drug at the Carbon Nanotube: DFT Approach. Lab-in-Silico 2021, 2, 3–8. [Google Scholar] [CrossRef]
- Hijji, Y.; Rajan, R.; Ben Yahia, H.; Mansour, S.; Zarrouk, A.; Warad, I. One-Pot Microwave-Assisted Synthesis of Water-Soluble Pyran-2,4,5-triol Glucose Amine Schiff Base Derivative: XRD/HSA Interactions, Crystal Structure, Spectral, Thermal and a DFT/TD-DFT. Crystals 2021, 11, 117. [Google Scholar] [CrossRef]
- El Azab, I.; El-Sheshtawy, H.; Bakr, R.; Elkanzi, N.A.A. New 1,2,3-Triazole-Containing Hybrids as Antitumor Candidates: Design, Click Reaction Synthesis, DFT Calculations, and Molecular Docking Study. Molecules 2021, 26, 708. [Google Scholar] [CrossRef] [PubMed]
- Frechette, M.; Belletete, M.; Bergeron, J.-Y.; Durocher, G.; Leclerc, M. Monomer reactivity vs regioregularity in polythiophene derivatives: A joint synthetic and theoretical investigation. Synth. Met. 1997, 84, 223–224. [Google Scholar] [CrossRef]
- Mbarek, M.; Abbassi, F.; Alimi, K. The effect of cross-linking yield of PVK on the vibrational and emissive properties of new copolymer based on vinylcarbazole and phenylene-vinylene units. J. Mol. Struct. 2016, 1120, 125–131. [Google Scholar] [CrossRef]
- Mbarek, M.; Almoneef, M.; Alimi, K. Elaboration and study of the new copolymer based on vinylcarbazole and Stilbene (VK-Stilbene): Correlation structure-proprieties. J. Mol. Struct. 2020, 1217, 128384. [Google Scholar] [CrossRef]
- Bouzayen, N.; Zaidi, B.; Mabrouk, A.; Chemek, M.; Alimi, K. Density functional theory studies of new bipolar carbazole–benzothiazole: Electronic and vibrational properties. Comput. Theor. Chem. 2012, 984, 1–8. [Google Scholar] [CrossRef]
- Faulques, E.; Wallnöfer, W.; Kuzmany, H. Vibrational analysis of heterocyclic polymers: A comparative study of polythiophene, polypyrrole, and polyisothianaphtene. J. Chem. Phys. 1989, 90, 7585–7593. [Google Scholar] [CrossRef]
- Abbassi, F.; Mbarek, M.; Kreher, D.; Alimi, K. Cross linking-dependent properties of PVK-MEH-PPV bi-block copolymer: Vibrational, thermal and optical properties. J. Phys. Chem. Solids 2019, 126, 274–279. [Google Scholar] [CrossRef]
- Abbassi, F.; Mbarek, M.; Kreher, D.; Alimi, K. Synthesis and characterization of a copolymer involving PVK and MEH-PPV for organic electronic devices. J. Phys. Chem. Solids 2017, 103, 142–146. [Google Scholar] [CrossRef]
- Mbarek, M.; Almoneef, M.; Ben Salah, Y.; Alimi, K. Structural and photophysical properties of PVK-F8BT copolymer thin films, with single walled carbon nanotubes: Synthesis, characterization and modeling. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118502. [Google Scholar] [CrossRef] [PubMed]
- Vikramaditya, T.; Saisudhakar, M.; Sumithra, K. Electronic structure of α-oligothiophenes with various substituents. J. Mol. Struct. 2015, 1081, 114–123. [Google Scholar] [CrossRef]
- Kumar, A.; Deval, V.; Tandon, P.; Gupta, A.; D’Silva, E.D. Experimental and theoretical (FT-IR, FT-Raman, UV–vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 41–53. [Google Scholar] [CrossRef]
- Sun, L.; Bai, F.-Q.; Zhao, Z.-X.; Zhang, H.-X. Design of new benzothiadiazole-based linear and star molecules with different functional groups as solar cells materials: A theoretical approach. Sol. Energy Mater. Sol. Cells 2011, 95, 1800–1810. [Google Scholar] [CrossRef]
- Kokalj, A. On the alleged importance of the molecular electron-donating ability and the HOMO–LUMO gap in corrosion inhibition studies. Corros. Sci. 2021, 180, 109016. [Google Scholar] [CrossRef]
- Mbarek, M.; Abbassi, F.; Alimi, K. Complementary study based on DFT to describe the structure and properties relationship of diblock copolymer based on PVK and PPV. Phys. B Condens. Matter 2016, 497, 45–50. [Google Scholar] [CrossRef]
- Mbarek, M.; Sagaama, L.; Alimi, K. New copolymer involving PVK and F8BT for organic solar cells applications: Design, synthesis, characterization and theoretical studies. Opt. Mater. 2019, 91, 447–454. [Google Scholar] [CrossRef]
TD-DFT/6-31G (d,p) | λ max (nm) (eV) | Force Oscillateur (f) | Assignement H,L (H = HOMO, L = LUMO) | |
---|---|---|---|---|
Absorption | T1 | 222 Exp (221) | 0.2260 | H-2→L+8(+18%) H-1→L+8(7%) H-5→L+8(+7%) H-2→L+6(6%) |
5.58 Exp (5.61) | ||||
T2 | 252 Exp (254) | 0.8169 | H-3→L+4(+15%) H-4→L+9(+11%) H-1→L+2(+8%) H-1→L+6(+5%) H-7→L+0(+12%) H-0→L+6(7%) | |
4.92 Exp (4.88) | ||||
306 Exp (312) | 0.7990 | H-3→L+2(+50%) H-1→L+4(7%) | ||
4.05 Exp (3.97) | ||||
358 Exp (361) | 0.5777 | H-0→L+1(+41%) H-2→L+0(14%) H-1→L+0(+7%) H-2→L+1(7%) H-1→L+1(+7%) | ||
3.46 Exp (3.43) | ||||
T3 | 507 Exp (504, 530, 563) | 1.8032 | H→L (86%) | |
2.44 Exp (2.46; 2.33; 2.20) |
TD/DFT/6-31 G (d,p) | λ max (nm) | Oscillator Force (f) | Assignment H,L (H = HOMO, L = LUMO) | τR (ns) | |
---|---|---|---|---|---|
Emission | Excited state 1 | 499 Exp (510) | 2.20 | L→H (+98%) ↓ | 1.7 |
Excited state 2 | 481.2 Exp (483) | 1.14 | L→H-1(+96%) ↓ | 3.06 | |
Excited state 3 | 458 Exp (563) | 0.86 | L→H-2 (+52%) L+1→H-1(+6%) L→H-3 (+8%) | 3.67 |
Φx (eV) | ΔEh (eV) | ΔEe (eV) | ΔEe − ΔEh (eV) | |
---|---|---|---|---|
Au | 5.30 | 0.06 | 3.42 | 3.36 |
Al | 4.20 | 0.06 | 2.32 | 2.26 |
Mg | 3.60 | 0.06 | 1.72 | 1.66 |
Ca | 2.87 | 0.06 | 0.89 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Salah, Y.; Altowyan, A.S.; Mbarek, M.; Alimi, K. Complementary Study Based on DFT of Optical and Electronic Properties of New Copolymer PVK-F8T2. Polymers 2021, 13, 1805. https://doi.org/10.3390/polym13111805
Ben Salah Y, Altowyan AS, Mbarek M, Alimi K. Complementary Study Based on DFT of Optical and Electronic Properties of New Copolymer PVK-F8T2. Polymers. 2021; 13(11):1805. https://doi.org/10.3390/polym13111805
Chicago/Turabian StyleBen Salah, Yasmine, Abeer S. Altowyan, Mohamed Mbarek, and Kamel Alimi. 2021. "Complementary Study Based on DFT of Optical and Electronic Properties of New Copolymer PVK-F8T2" Polymers 13, no. 11: 1805. https://doi.org/10.3390/polym13111805
APA StyleBen Salah, Y., Altowyan, A. S., Mbarek, M., & Alimi, K. (2021). Complementary Study Based on DFT of Optical and Electronic Properties of New Copolymer PVK-F8T2. Polymers, 13(11), 1805. https://doi.org/10.3390/polym13111805