The Effect of Adding Modified Chitosan on the Strength Properties of Bacterial Cellulose for Clinical Applications
Abstract
:1. Introduction
- Allogeneic tissues: xenograft tissue can cause its rejection [28].
- Dura mater and surrounding tissue adhesion: after the restoration, the dura mater implants have a different degree of adhesion, mainly associated with the inflammatory response, physical and chemical properties of the material. The lower the content of protein and fat in the material, the lower the degree of adhesion [29].
- Development of aseptic inflammation. In addition, the use of allogeneic and xenogenic materials can lead to the spread of pathogens among humans and animals, prions and viruses [30].
- Bleeding: incipient granulation tissue that regenerates and covers the graft material can cause bleeding. There may be a gap between the material and the elaborated network of neocapillaries covering the matrix. The capillaries are fragile, bleeding can occur when the implant is mixed, and a subdural hematoma can form in the cranial cavity [31].
- Development of liquorrhea as a result of the lack of reliable sealing of the dura mater defect [32].
- The occurrence of epileptic seizures, as a result of the development of meningeal adhesions [33].
2. Materials and Methods
2.1. Ethical Protocol and Transportation
2.2. Methods for the Synthesis Native BNC
2.3. Methods for the Synthesis of Modified BNC
2.4. Elemental Analysis of BNC Samples
2.5. Atomic Force Microscopy
2.6. Thickness Measurement and Material Cutting
2.7. Mechanical Test Protocol
2.8. Statistical Analysis
3. Results
3.1. Results of AFM of BNC
3.2. Elemental Analysis of Novochizol™
3.3. Characteristics of a Sample of Tested Specimens
3.4. Statistical Analysis of Mechanical Test Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
DM | Dura Mater |
BNC | Bacterial Nanocellulose |
BNC + N | composite Bacterial Nanocellulose + Novochizol™ |
BNC + N + V | composite Bacterial Nanocellulose + Novochizol™ + vancomycin |
LVDT sensor | Linear Variable Differential Transformer sensor |
CSF | Cerebrospinal fluid |
MRI | Magnetic resonance imaging |
AFM | Atomic force microscopy |
SEM | Scanning electron microscope |
References
- Fontana, R.; Talamonti, G.; D’Angelo, V.; Arena, O.; Monte, V.; Collice, M. Spontaneous haematoma as unusual complication of silastic dural substitute. Report of 2 cases. Acta Neurochir. 1992, 115, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Van Calenbergh, F.; Quintens, E.; Sciot, R.; Van Loon, J.; Goffin, J.; Plets, C. The use of Vicryl Collagen® as a dura substitute: A clinical review of 78 surgical cases. Acta Neurochir. 1997, 139, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.; Isaacson, B.; Kutz, J.; Purcell, P.; Roland, P. The Association of Meningitis with Postoperative Cerebrospinal Fluid Fistula. J. Neurol. Surg. Part Skull Base 2012, 73, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Couture, D.; Branch, C.L. Spinal pseudomeningoceles and cerebrospinal fluid fistulas. Neurosurg. Focus 2003, 15, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Knight, S. Pseudomeningocele. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 2869–2874. [Google Scholar] [CrossRef]
- Esposito, F.; Cappabianca, P.; Fusco, M.; Cavallo, L.M.; Bani, G.G.; Biroli, F.; Sparano, A.; de Divitiis, O.; Signorelli, A. Collagen-only biomatrix as a novel dural substitute: Examination of the efficacy, safety and outcome: Clinical experience on a series of 208 patients. Clin. Neurol. Neurosurg. 2008, 110, 343–351. [Google Scholar] [CrossRef]
- Sun, H.; Wang, H.; Diao, Y.; Tu, Y.; Li, X.; Zhao, W.; Ren, J.; Zhang, S. Large retrospective study of artificial dura substitute in patients with traumatic brain injury undergo decompressive craniectomy. Brain Behav. 2018, 8, e00907. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Liu, B.; Mao, Z.; Wang, C.; Dunne, N.; Fan, Y.; Li, X. Applications of materials for dural reconstruction in pre-clinical and clinical studies: Advantages and drawbacks, efficacy, and selections. Mater. Sci. Eng. C 2020, 117, 111326. [Google Scholar] [CrossRef]
- Callovini, G.M.; Bolognini, A.; Callovini, T.; Giordano, M.; Gazzeri, R. Treatment of CSF leakage and infections of dural substitute in decompressive craniectomy using fascia lata implants and related anatomopathological findings. Br. J. Neurosurg. 2021, 35, 18–21. [Google Scholar] [CrossRef]
- Knopp, U.; Christmann, F.; Reusche, E.; Sepehrnia, A. A new collagen biomatrix of equine origin versus a cadaveric dura graft for the repair of dural defects–a comparative animal experimental study. Acta Neurochir. 2005, 147, 877–887. [Google Scholar] [CrossRef]
- Warren, W.L.; Medary, M.B.; Dureza, C.D.; Bellotte, J.B.; Flannagan, P.P.; Oh, M.Y.; Fukushima, T. Dural repair using acellular human dermis: Experience with 200 cases: Technique assessment. Neurosurgery 2000, 46, 1391–1396. [Google Scholar] [CrossRef]
- Eichberg, D.G.; Ali, S.C.; Buttrick, S.S.; Komotar, R.J. The use of dehydrated amniotic membrane allograft for augmentation of dural closure in craniotomies and endoscopic endonasal transphenoidal surgeries. Br. J. Neurosurg. 2018, 32, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Morales-Avalos, R.; Soto-Domínguez, A.; García-Juárez, J.; Saucedo-Cardenas, O.; Bonilla-Galvan, J.R.; Cardenas-Serna, M.; Guzmán-López, S.; Elizondo-Omaña, R.E. Characterization and morphological comparison of human dura mater, temporalis fascia, and pericranium for the correct selection of an autograft in duraplasty procedures. Surg. Radiol. Anat. 2017, 39, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Zerris, V.A.; James, K.S.; Roberts, J.B.; Bell, E.; Heilman, C.B. Repair of the dura mater with processed collagen devices. J. Biomed. Mater. Res. Part B 2007, 83, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, P.; Griessenauer, C.; Ogilvy, C.S.; Thomas, A.J. Use of an absorbable synthetic polymer dural substitute for repair of dural defects: A technical note. Cureus 2018, 10, e2127. [Google Scholar] [CrossRef] [Green Version]
- MacEwan, M.R.; Kovacs, T.; Osbun, J.; Ray, W.Z. Comparative analysis of a fully-synthetic nanofabricated dura substitute and bovine collagen dura substitute in a large animal model of dural repair. Interdiscip. Neurosurg. 2018, 13, 145–150. [Google Scholar] [CrossRef]
- Pandit, V.A.; Sharma, R.K.; Bhaskar, S.; Kindra, A.S.; Choudhary, A.; Gupta, L. A Randomised Interventional Study to Compare Autologous and Nonautologous Dural Substitutes Among Traumatic Brain Injury Patients. Indian J. Neurotrauma 2021, 18, 26–31. [Google Scholar] [CrossRef]
- Pogorielov, M.; Kravtsova, A.; Reilly, G.; Deineka, V.; Tetteh, G.; Kalinkevich, O.; Pogorielova, O.; Moskalenko, R.; Tkach, G. Experimental evaluation of new chitin–chitosan graft for duraplasty. J. Mater. Sci. Mater. Med. 2017, 28, 34. [Google Scholar] [CrossRef]
- Rosen, C.L.; Steinberg, G.K.; DeMonte, F.; Delashaw, J.B., Jr.; Lewis, S.B.; Shaffrey, M.E.; Aziz, K.; Hantel, J.; Marciano, F.F. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery 2011, 69, 1093–1104. [Google Scholar] [CrossRef] [Green Version]
- Laun, A.; Tonn, J.; Jerusalem, C. Comparative study of lyophilized human dura mater and lyophilized bovine pericardium as dural substitutes in neurosurgery. Acta Neurochir. 1990, 107, 16–21. [Google Scholar] [CrossRef]
- Yamada, K.; Miyamoto, S.; Takayama, M.; Nagata, I.; Hashimoto, N.; Ikada, Y.; Kikuchi, H. Clinical application of a new bioabsorbable artificial dura mater. J. Neurosurg. 2002, 96, 731–735. [Google Scholar] [CrossRef]
- Bonda, D.J.; Manjila, S.; Mehndiratta, P.; Khan, F.; Miller, B.R.; Onwuzulike, K.; Puoti, G.; Cohen, M.L.; Schonberger, L.B.; Cali, I. Human prion diseases: Surgical lessons learned from iatrogenic prion transmission. Neurosurg. Focus 2016, 41, E10. [Google Scholar] [CrossRef] [Green Version]
- Brooke, F.J.; Boyd, A.; Klug, G.M.; Masters, C.L.; Collins, S.J. Lyodura use and the risk of iatrogenic Creutzfeldt–Jakob disease in Australia. Med. J. Aust. 2004, 180, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Barbolt, T.A.; Odin, M.; Léger, M.; Kangas, L.; Holste, J.; Liu, S.H. Biocompatibility evaluation of dura mater substitutes in an animal model. Neurol. Res. 2001, 23, 813–820. [Google Scholar] [CrossRef]
- Yoshioka, N. Cranial reconstruction following the removal of an infected synthetic dura mater substitute. Plast. Reconstr. Surg. Glob. Open 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Malliti, M.; Page, P.; Gury, C.; Chomette, E.; Nataf, F.; Roux, F.X. Comparison of deep wound infection rates using a synthetic dural substitute (neuro-patch) or pericranium graft for dural closure: A clinical review of 1 year. Neurosurgery 2004, 54, 599–604. [Google Scholar] [CrossRef]
- Parlato, C.; Granata, R.; Moraci, A.; Accardo, M. Dural reconstruction in meningioma surgery. In Monleon D. Meningiomas-Management and Surgery; InTechOpen: London, UK, 2012; pp. 103–124. [Google Scholar]
- Platt, J.L. Knocking out xenograft rejection. Nat. Biotechnol. 2002, 20, 231–232. [Google Scholar] [CrossRef]
- Shintani, T. Experimental studies on prevention of adhesion of tissue surrounding dura mater and morphological changes in the spinal cord following laminectomy (author’s transl). Nihon Seikeigeka Gakkai Zasshi 1980, 54, 1477–1495. [Google Scholar]
- Rohde, S. Inflammatory diseases of the meninges. In Inflammatory Diseases of the Brain; Springer: New York, NY, USA, 2009; pp. 169–183. [Google Scholar]
- Takai, K.; Taniguchi, M. Intracranial hypotension with coma: Microsurgical repair of a spinal ventral dural tear and drainage of subdural hematoma with intracranial pressure monitoring. World Neurosurg. 2018, 118, 269–273. [Google Scholar] [CrossRef]
- Danilova, D.; Gorbunova, L.; Tsybusov, S.; Uspensky, I.; Kravets, L.Y. Materials for Plastic Surgery of the Dura Mater: History and Current State of the Problem. Mod. Technol. Med. 2018, 10, 194–201. [Google Scholar] [CrossRef]
- Zaidi, H.A.; Pendleton, C.; Cohen-Gadol, A.A.; Quinones-Hinojosa, A. Harvey Cushing’s repair of a dural defect after a traumatic brain injury: Novel use of a fat graft. World Neurosurg. 2011, 75, 696–699. [Google Scholar] [CrossRef]
- Chen, S.Q.; Lopez-Sanchez, P.; Wang, D.; Mikkelsen, D.; Gidley, M.J. Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter. Food Hydrocoll. 2018, 81, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Kizmazoglu, C.; Aydin, H.E.; Kaya, I.; Atar, M.; Husemoglu, B.; Kalemci, O.; Sozer, G.; Havitcioglu, H. Comparison of biomechanical properties of dura mater substitutes and cranial human dura mater: An in vitro study. J. Korean Neurosurg. Soc. 2019, 62, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwirner, J.; Scholze, M.; Waddell, J.N.; Ondruschka, B.; Hammer, N. Mechanical Properties of Human Dura Mater in Tension–An Analysis at an Age Range of 2 to 94 Years. Sci. Rep. 2019, 9, 16655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019, 263, 131–194. [Google Scholar] [CrossRef]
- Lazarini, S.C.; de Aquino, R.; Amaral, A.C.; Corbi, F.C.; Corbi, P.P.; Barud, H.S.; Lustri, W.R. Characterization of bilayer bacterial cellulose membranes with different fiber densities: A promising system for controlled release of the antibiotic ceftriaxone. Cellulose 2016, 23, 737–748. [Google Scholar] [CrossRef]
- Saville, B. Physical Testing of Textiles; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Ogden, R. Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1972, 326, 565–584. [Google Scholar] [CrossRef]
- Schisterman, E.F.; Cole, S.R.; Ye, A.; Platt, R.W. Accuracy loss due to selection bias in cohort studies with left truncation. Paediatr. Perinat. Epidemiol. 2013, 27, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Parshin, D.; Lipovka, A.; Kharchenko, A. Investigation of the mechanical properties of a composite material of chitosan-vancomycin-nanocellulose nanoparticles of bacterial origin to close dura mater defects. In Proceedings of the 11th World Biomaterial Congress, Online, 11–15 December 2020. [Google Scholar]
- Rasch, A.; Naujokat, H.; Wang, F.; Seekamp, A.; Fuchs, S.; Klüter, T. Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality. PLoS ONE 2019, 14, e0218404. [Google Scholar] [CrossRef] [Green Version]
- Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brown, R.M., Jr. Microbial cellulose—The natural power to heal wounds. Biomaterials 2006, 27, 145–151. [Google Scholar] [CrossRef]
- Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 2007, 8, 1–12. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Kharchenko, A.V.; Stupak, V.V. Bacterial nanocellulose as a plastic material for closure of defects of the dura mater: Literature review. J. Spine Surg. 2019, 16, 62–73. [Google Scholar] [CrossRef]
- Czaja, W.; Romanovicz, D.; Malcolm Brown, R. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 2004, 11, 403–411. [Google Scholar] [CrossRef]
- Sergeevichev, D.; Fomenko, V.; Strelnikov, A.; Dokuchaeva, A.; Vasilieva, M.; Chepeleva, E.; Rusakova, Y.; Artemenko, S.; Romanov, A.; Salakhutdinov, N.; et al. Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models. Mar. Drugs 2020, 18, 410. [Google Scholar] [CrossRef]
- Sergeevichev, D.S.; Krasilnikova, A.A.; Strelnikov, A.G.; Fomenko, V.V.; Salakhutdinov, N.F.; Romanov, A.B.; Karaskov, A.M.; Pokushalov, E.A.; Steinberg, J.S. Globular chitosan prolongs the effective duration time and decreases the acute toxicity of botulinum neurotoxin after intramuscular injection in rats. Toxicon 2018, 143, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Romanov, A.; Strelnikov, A.; Sergeevichev, D.; Salakhutdinov, N.; Fomenko, V.; Shabanov, V.; Losik, D.; Mikheenko, I.; Karaskov, A.; Pokushalov, E. P1711The influence of the new pharmaceutical composition containing botulinum toxin on different pharmacological models of heart rhythm disorders. Eur. Heart J. 2017, 38. [Google Scholar] [CrossRef]
- Krasilnikova, A.A.; Sergeevichev, D.S.; Fomenko, V.V.; Korobeynikov, A.A.; Vasilyeva, M.B.; Yunoshev, A.S.; Karaskov, A.M.; Pokushalov, E.A. Globular chitosan treatment of bovine jugular veins: Evidence of anticalcification efficacy in the subcutaneous rat model. Cardiovasc. Pathol. 2018, 32, 1–7. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.S.; Nair, S.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef]
- Dutta, P.K.; Dutta, J.; Tripathi, V. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar]
- Ifuku, S.; Nogi, M.; Abe, K.; Handa, K.; Nakatsubo, F.; Yano, H. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: Dependence on acetyl-group DS. Biomacromolecules 2007, 8, 1973–1978. [Google Scholar] [CrossRef]
- Scionti, G. Mechanical properties of bacterial cellulose implants. Beilstein J. Nanotechnol. 2010, 4, 325–329. [Google Scholar]
- Nakayama, A.; Kakugo, A.; Gong, J.P.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 2004, 14, 1124–1128. [Google Scholar] [CrossRef]
- Dapson, R. Macromolecular changes caused by formalin fixation and antigen retrieval. Biotech. Histochem. 2007, 82, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Nimeskern, L.; Martínez Ávila, H.; Sundberg, J.; Gatenholm, P.; Müller, R.; Stok, K.S. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J. Mech. Behav. Biomed. Mater. 2013, 22, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Arianita, A.; Amalia, B.; Pudjiastuti, W.; Melanie, S.; Fauzia, V.; Imawan, C. Effect of glutaraldehyde to the mechanical properties of chitosan/nanocellulose. J. Phys. Conf. Ser. 2019, 1317, 012045. [Google Scholar] [CrossRef]
- Van Noort, R.; Martin, T.; Black, M.; Barker, A.; Montero, C. The mechanical properties of human dura mater and the effects of storage media. Clin. Phys. Physiol. Meas. 1981, 2, 197–203. [Google Scholar] [CrossRef]
- Sang, C.; Maiti, S.; Fortunato, R.N.; Kofler, J.; Robertson, A.M. A uniaxial testing approach for consistent failure in vascular tissues. J. Biomech. Eng. 2018, 140, 0610101–06101010. [Google Scholar] [CrossRef]
- Parshin, D.; Lipovka, A.; Yunoshev, A.; Ovsyannikov, K.; Dubovoy, A.; Chupakhin, A. On the optimal choice of a hyperelastic model of ruptured and unruptured cerebral aneurysm. Sci. Rep. 2019, 9, 15865. [Google Scholar] [CrossRef]
- Laurence, D.W.; Homburg, H.; Yan, F.; Tang, Q.; Fung, K.M.; Bohnstedt, B.N.; Holzapfel, G.A.; Lee, C.H. A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue. Sci. Rep. 2021, 11, 3525. [Google Scholar] [CrossRef]
- Pensalfini, M.; Meneghello, S.; Lintas, V.; Bircher, K.; Ehret, A.E.; Mazza, E. The suture retention test, revisited and revised. J. Mech. Behav. Biomed. Mater. 2018, 77, 711–717. [Google Scholar] [CrossRef]
Characteristic | Chitosan | Novochizol™ |
---|---|---|
Solubility (pH < 6) | Yes | Yes |
Solubility (pH > 6) | No | Yes (dispersion) |
Viscosity | High | Low |
Biodegradability | Fast | Slow |
Chemical stability | Low | High |
Frost resistance | No | Yes |
Physical states | Modifiable only | Modifiable by |
through chemical | changing the | |
reactions with | degree on intramolecular | |
other compounds | cross linking |
Sample Type | C, % | H, % | N, % |
---|---|---|---|
BNC | 39.73 | 7.11 | 7.14 |
BNC + N | 42.31 | 7.37 | 4.85 |
BNC + N + V | 46.4 | 6.64 | 4.86 |
ID | Ultimate Strain | Ultimate Stress, MPa | Young Modulus (Small Deformations) |
---|---|---|---|
DM (cadaveric) | 3.08 | 2.58 | 1.15 |
DM (fresh) | 2.99 | 2.29 | 1.27 |
BNC | 1.09 | 0.58 | 31.6 |
BNC + N + V | 1.12 | 0.75 | 34.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipovka, A.; Kharchenko, A.; Dubovoy, A.; Filipenko, M.; Stupak, V.; Mayorov, A.; Fomenko, V.; Geydt, P.; Parshin, D. The Effect of Adding Modified Chitosan on the Strength Properties of Bacterial Cellulose for Clinical Applications. Polymers 2021, 13, 1995. https://doi.org/10.3390/polym13121995
Lipovka A, Kharchenko A, Dubovoy A, Filipenko M, Stupak V, Mayorov A, Fomenko V, Geydt P, Parshin D. The Effect of Adding Modified Chitosan on the Strength Properties of Bacterial Cellulose for Clinical Applications. Polymers. 2021; 13(12):1995. https://doi.org/10.3390/polym13121995
Chicago/Turabian StyleLipovka, Anna, Alexey Kharchenko, Andrey Dubovoy, Maxim Filipenko, Vyacheslav Stupak, Alexander Mayorov, Vladislav Fomenko, Pavel Geydt, and Daniil Parshin. 2021. "The Effect of Adding Modified Chitosan on the Strength Properties of Bacterial Cellulose for Clinical Applications" Polymers 13, no. 12: 1995. https://doi.org/10.3390/polym13121995
APA StyleLipovka, A., Kharchenko, A., Dubovoy, A., Filipenko, M., Stupak, V., Mayorov, A., Fomenko, V., Geydt, P., & Parshin, D. (2021). The Effect of Adding Modified Chitosan on the Strength Properties of Bacterial Cellulose for Clinical Applications. Polymers, 13(12), 1995. https://doi.org/10.3390/polym13121995