Styrenated Oil Synthesis with Cyclic Carbonate Functional Groups on Polystyrene Segment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation of Partial Glycerides (PGs)
2.4. Synthesis of Oil-Based Macroinitiator (OBMI)
2.5. Synthesis of 4-[(Prop-2-en-1-yloxy)methyl]-1,3-dioxolan-2-one (AGC)
2.6. Synthesis of OBMI-St-AGC
2.7. Preparation of OBMI-St-AGC-APTES
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seniha Güner, F.; Yaǧci, Y.; Tuncer Erciyes, A. Polymers from triglyceride oils. Prog. Polym. Sci. 2006, 31, 633–670. [Google Scholar] [CrossRef]
- Sharmin, E.; Zafar, F.; Akram, D.; Alam, M.; Ahmad, S. Recent advances in vegetable oils based environment friendly coatings: A review. Ind. Crop. Prod. 2015, 76, 215–229. [Google Scholar] [CrossRef]
- Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 2017, 71, 91–143. [Google Scholar] [CrossRef]
- Karak, N. Vegetable oils and their derivatives. In Vegetable Oil-Based Polymers; Elsevier: Amsterdam, The Netherlands, 2012; pp. 54–95. ISBN 9780857097101. [Google Scholar]
- Hayes, D.G.; Dumont, M.J. Polymeric products derived from industrial oils for paints, coatings, and other applications. In Industrial Oil Crops; Elsevier: Amsterdam, The Netherlands, 2016; pp. 43–73. ISBN 9781893997981. [Google Scholar]
- Erkal, F.S.; Erciyes, A.T.; Yagci, Y. New method for the styrenation of triglyceride oils for surface coatings. J. Coat. Technol. 1993, 65, 37–43. [Google Scholar]
- Kabasakal, O.S.; Guner, F.S.; Erciyes, A.T.; Yagci, Y. Styrenation of oils based on secondary esters of castor oil. J. Coat. Technol. 1995, 67, 47–51. [Google Scholar]
- Kabasakal, O.S.; Guner, F.S.; Arslan, A.; Ergan, A.; Erciyes, A.T.; Yagci, Y. Use of castor oil in the preparation of various oil-based binders. J. Coat. Technol. 1996, 68, 57–62. [Google Scholar]
- Alemdar, N.; Erciyes, A.T.; Yagci, Y. Styrenation of triglyceride oil by nitroxide mediated radical polymerization. Prog. Org. Coat. 2009, 66, 99–106. [Google Scholar] [CrossRef]
- Güner, F.S.; Usta, S.; Erciyes, A.T.; Yagci, Y. Styrenation of triglyceride oils by macromonomer technique. J. Coat. Technol. 2000, 72, 107–110. [Google Scholar] [CrossRef]
- Gultekin, M.; Beker, U.; Güner, F.S.; Erciyes, A.T.; Yagci, Y. Styrenation of castor oil and linseed oil by macromer method. Macromol. Mater. Eng. 2000, 283, 15–20. [Google Scholar] [CrossRef]
- Akbas, T.; Beker, Ü.G.; Güner, F.S.; Erciyes, A.T.; Yagci, Y. Drying and semidrying oil macromonomers. III. Stvrenation of sunflower and linseed oils. J. Appl. Polym. Sci. 2003, 88, 2373–2376. [Google Scholar] [CrossRef]
- Erciyes, A.T.; Kabasakal, O.S.; Erkal, F.S. Use of methylolated abietic acid and toluene diisocyanate in the modification of triglyceride oils. J. Coat. Technol. 1991, 63, 83–88. [Google Scholar]
- Güner, F.S.; Gümüsel, A.; Calica, S.; Erciyes, A.T. Study of film properties of some urethane oils. J. Coat. Technol. 2002, 74, 55–59. [Google Scholar] [CrossRef]
- Cumurcu, A.; Erciyes, A.T. Synthesis and properties of alkoxysilane-functionalized urethane oil/titania hybrid films. Prog. Org. Coat. 2010, 67, 317–323. [Google Scholar] [CrossRef]
- Yildirim, C.; Erciyes, A.T.; Yagci, Y. Thermally curable benzoxazine-modified vegetable oil as a coating material. J. Coat. Technol. Res. 2013, 10, 559–569. [Google Scholar] [CrossRef]
- Taşdelen-Yücedaǧ, Ç.; Erciyes, A.T. Preparation of oil-modified polycaprolactone and its further modification with benzoxazine for coating purposes. Prog. Org. Coat. 2013, 76, 137–146. [Google Scholar] [CrossRef]
- Tasdelen-Yucedag, C.; Erciyes, A.T. Modification of polycaprolactone-styrene-vinyl trimethoxysilane terpolymer with sunflower oil for coating purposes. Prog. Org. Coat. 2014, 77, 1750–1760. [Google Scholar] [CrossRef]
- Ochiai, B.; Matsuki, M.; Nagai, D.; Miyagawa, T.; Endo, T. Radical polymerization behavior of a vinyl monomer bearing five-membered cyclic carbonate structure and reactions of the obtained polymers with amines. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 584–592. [Google Scholar] [CrossRef]
- Benyahya, S.; Desroches, M.; Auvergne, R.; Carlotti, S.; Caillol, S.; Boutevin, B. Synthesis of glycerin carbonate-based intermediates using thiol–ene chemistry and isocyanate free polyhydroxyurethanes therefrom. Polym. Chem. 2011, 2, 2661. [Google Scholar] [CrossRef] [Green Version]
- Webster, D.C. Cyclic carbonate functional polymers and their applications. Prog. Org. Coat. 2003, 47, 77–86. [Google Scholar] [CrossRef]
- Kathalewar, M.S.; Joshi, P.B.; Sabnis, A.S.; Malshe, V.C. Non-isocyanate polyurethanes: From chemistry to applications. RSC Adv. 2013, 3, 4110–4129. [Google Scholar] [CrossRef]
- Alkaabi, K. The Synthesis, Chemical and Physical Characterisation of Selected Energetic Binder Systems. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2009; pp. 1–287. [Google Scholar]
- Stanton, J.M. Isocyanate-modified drying oils. J. Am. Oil Chem. Soc. 1959, 36, 503–507. [Google Scholar] [CrossRef]
- Cocks, L.V.; Van Rede, C. Laboratory Handbook for Oil and Fats Analysts; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Zhu, Z.; Einset, A.G.; Yang, C.Y.; Chen, W.X.; Wnek, G.E. Synthesis of Polysiloxanes bearing cyclic carbonate side chains. Dielectric properties and ionic conductivities of lithium triflate complexes. Macromolecules 1994, 27, 4076–4079. [Google Scholar] [CrossRef]
- Agudelo, N.A.; Perez, L.D. Synthesis and characterization of polydimethylsiloxane end-modified polystyrene from poly(styrene-co-vinyltriethoxysilane) copolymers. Mater. Res. 2016, 19, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Gunji, T.; Shigematsu, Y.; Kajiwara, T.; Abe, Y. Preparation of free-standing films with sulfonyl group from 3-mercaptopropyl(trimethoxy)silane/1,2-bis(triethoxysilyl)ethane copolymer. Polym. J. 2010, 42, 684–688. [Google Scholar] [CrossRef]
- Raw, Refined and Boiled Linseed Oil for Paints and Varnishes—Specifications and Methods of Test; ISO 150:2018(E), International ISO Standard; International Organization for Standardization: Geneva, Switzerland, 2018.
- Freedman, B.; Pryde, E.H.; Mounts, T.L. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 1984, 61, 1638–1643. [Google Scholar] [CrossRef]
- Ortega-García, J.; Gámez-Meza, N.; Noriega-Rodriguez, J.A.; Dennis-Quiñonez, O.; García-Galindo, H.S.; Angulo-Guerrero, J.O.; Medina-Juárez, L.A. Refining of high oleic safflower oil: Effect on the sterols and tocopherols content. Eur. Food Res. Technol. 2006, 223, 775–779. [Google Scholar] [CrossRef]
- Kantor, M. Refining of drying oils. J. Am. Oil Chem. Soc. 1950, 27, 455–462. [Google Scholar] [CrossRef]
- Ghazani, S.M.; Marangoni, A.G. Minor components in canola oil and effects of refining on these constituents: A review. J. Am. Oil Chem. Soc. 2013, 90, 923–932. [Google Scholar] [CrossRef]
- Gutfinger, T.; Letan, A. Quantitative changes in some unsaponifiable components of soya bean oil due to refining. J. Sci. Food Agric. 1974, 25, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Chang, J.-P.; Lu, K.-T. Synthesis of linseed oil-based waterborne urethane oil wood coatings. Polymers 2018, 10, 1235. [Google Scholar] [CrossRef] [Green Version]
- Nimbalkar, R.V.; Athawale, V.D. Polyurethane dispersions based on interesterification product of fish and linseed oil. J. Am. Oil Chem. Soc. 2010, 87, 1035–1045. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Miquel, S.; Primo, J. Catalysts for the production of fine chemicals. J. Catal. 1998, 173, 315–321. [Google Scholar] [CrossRef]
- Sonntag, N.O.V. Glycerolysis of fats and methyl esters—Status, review and critique. J. Am. Oil Chem. Soc. 1982, 59, 795A–802A. [Google Scholar] [CrossRef]
- Noureddini, H.; Medikonduru, V. Glycerolysis of fats and methyl esters. J. Am. Oil Chem. Soc. 1997, 74, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Noureddini, H.; Harkey, D.W.; Gutsman, M.R. A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 2004, 81, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Nitbani, F.O.; Tjitda, P.J.P.; Nurohmah, B.A.; Wogo, H.E. Preparation of fatty acid and monoglyceride from vegetable oil. J. Oleo Sci. 2020, 69, 277–295. [Google Scholar] [CrossRef] [Green Version]
- Alemdar, N.; Erciyes, A.T.; Bicak, N. Styrenated sunflower oil polymers from raft process for coating application. J. Appl. Polym. Sci. 2012, 125, 10–18. [Google Scholar] [CrossRef]
- Zovi, O.; Lecamp, L.; Loutelier-Bourhis, C.; Lange, C.M.; Bunel, C. A solventless synthesis process of new UV-curable materials based on linseed oil. Green Chem. 2011, 13, 1014. [Google Scholar] [CrossRef]
- Mosiewicki, M.; Aranguren, M.I.; Borrajo, J. Mechanical properties of linseed oil monoglyceride maleate/styrene copolymers. J. Appl. Polym. Sci. 2005, 97, 825–836. [Google Scholar] [CrossRef]
- Sopeña, S.; Fiorani, G.; Martín, C.; Kleij, A.W. Highly efficient organocatalyzed conversion of oxiranes and CO2 into organic carbonates. ChemSusChem 2015, 8, 3179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, H.; Zhou, Y.; Ke, C.; Lu, H. Compatibility of waste rubber powder/polystyrene blends by the addition of styrene grafted styrene butadiene rubber copolymer: Effect on morphology and properties. Polym. Bull. 2013, 70, 2829–2841. [Google Scholar] [CrossRef]
- Jamarosliza, J.; Hasan, M.; Hassan, A.; Ibrahim, N.A.; Ahmad, M.; Rahman, Z.A.; Yunus, W.M.Z.W. Effect of reaction conditions on the thermal stability of polystyrene grafted oil palm empty fruit bunch (OPEFB) fiber. J. Polym. Eng. 2014, 34, 185–191. [Google Scholar] [CrossRef]
- Miyata, T.; Matsumoto, K.; Endo, T.; Yonemori, S.; Watanabe, S. Synthesis and radical polymerization of styrene-based monomer having a five-membered cyclic carbonate structure. J. Polym. Sci. Part. A Polym. Chem. 2012, 50, 3046–3051. [Google Scholar] [CrossRef]
- Doley, S.; Dolui, S.K. Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties. Eur. Polym. J. 2018, 102, 161–168. [Google Scholar] [CrossRef]
- Yıldırım, Y.; Balcan, M. Comparative copolymerization of allyl glycidyl ether with styrene using radiation and chemical initiation methods. Iran. Polym. J. 2013, 22, 1–7. [Google Scholar] [CrossRef]
- Liu, G.; Wu, G.; Huo, S.; Jin, C.; Kong, Z. Synthesis and properties of non-isocyanate polyurethane coatings derived from cyclic carbonate-functionalized polysiloxanes. Prog. Org. Coat. 2017, 112, 169–175. [Google Scholar] [CrossRef]
- Lamarzelle, O.; Durand, P.L.; Wirotius, A.L.; Chollet, G.; Grau, E.; Cramail, H. Activated lipidic cyclic carbonates for non-isocyanate polyurethane synthesis. Polym. Chem. 2016, 7, 1439–1451. [Google Scholar] [CrossRef] [Green Version]
- Peña-Alonso, R.; Rubio, F.; Rubio, J.; Oteo, J.L. Study of the hydrolysis and condensation of γ- Aminopropyltriethoxysilane by FT-IR spectroscopy. J. Mater. Sci. 2007, 42, 595–603. [Google Scholar] [CrossRef]
- Cornille, A.; Blain, M.; Auvergne, R.; Andrioletti, B.; Boutevin, B.; Caillol, S. A study of cyclic carbonate aminolysis at room temperature: Effect of cyclic carbonate structures and solvents on polyhydroxyurethane synthesis. Polym. Chem. 2017, 8, 592–604. [Google Scholar] [CrossRef]
- Wackerly, J.W.; Dunne, J.F. Synthesis of polystyrene and molecular weight determination by 1 H NMR end-group analysis. J. Chem. Educ. 2017, 94, 1790–1793. [Google Scholar] [CrossRef]
- Semsarzadeh, M.A.; Reza, M.; Daronkola, R. 1H NMR studies of the molecular structure of PVAc-b-(MA-co-MMA) block terpolymer in atom transfer radical copolymerizatin reaction. Iran. Polym. J. 2007, 16, 47–56. [Google Scholar]
- Wazarkar, K.; Kathalewar, M.; Sabnis, A. Development of epoxy-urethane hybrid coatings via non-isocyanate route. Eur. Polym. J. 2016, 84, 812–827. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Zakula, A.D.; Webster, D.C. Organic-inorganic hybrid coatings prepared from glycidyl carbamate resin, 3-aminopropyl trimethoxy silane and tetraethoxyorthosilicate. Prog. Org. Coat. 2009, 64, 128–137. [Google Scholar] [CrossRef]
- Majoul, N.; Aouida, S.; Bessaïs, B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 2015, 331, 388–391. [Google Scholar] [CrossRef]
- Zhu, S.-Y.; Zhang, X.-M.; Chen, W.-X.; Feng, L.-F. Synthesis, characterization, and properties of polystyrene/SiO 2 hybrid materials via sol-gel process. Polym. Compos. 2015, 36, 482–488. [Google Scholar] [CrossRef]
- Assadi, M.G.; Golipour, N. Synthesis and characterization of new monomer and polymers of hindered silyl styrene. Des. Monomers Polym. 2007, 10, 79–89. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bingöl, E.; Erciyes, A.T. Styrenated Oil Synthesis with Cyclic Carbonate Functional Groups on Polystyrene Segment. Polymers 2021, 13, 2343. https://doi.org/10.3390/polym13142343
Bingöl E, Erciyes AT. Styrenated Oil Synthesis with Cyclic Carbonate Functional Groups on Polystyrene Segment. Polymers. 2021; 13(14):2343. https://doi.org/10.3390/polym13142343
Chicago/Turabian StyleBingöl, Eser, and Ahmet Tuncer Erciyes. 2021. "Styrenated Oil Synthesis with Cyclic Carbonate Functional Groups on Polystyrene Segment" Polymers 13, no. 14: 2343. https://doi.org/10.3390/polym13142343
APA StyleBingöl, E., & Erciyes, A. T. (2021). Styrenated Oil Synthesis with Cyclic Carbonate Functional Groups on Polystyrene Segment. Polymers, 13(14), 2343. https://doi.org/10.3390/polym13142343