Kinetic and Thermodynamic Characteristics of Fluoride Ions Adsorption from Solution onto the Aluminum Oxide Nanolayer of a Bacterial Cellulose-Based Composite Material
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alhassan, S.I.; He, Y.; Huang, L.; Wu, B.; Yan, L.; Deng, H.; Wang, H. A review on fluoride adsorption using modified bauxite: Surface modification and sorption mechanisms perspectives. J. Environ. Chem. Eng. 2020, 8, 104532. [Google Scholar] [CrossRef]
- Nijhawan, A.; Butler, E.C.; Sabatini, A.D. Fluoride Adsorption on Porous Hydroxyapatite Ceramic Filters: A Study of Kinetics. Environ. Eng. Sci. 2020, 37, 409–417. [Google Scholar] [CrossRef]
- Foucaud, Y.; Lainé, J.; Filippov, L.O.; Barrès, O.; Kim, W.J.; Filippova, I.V.; Pastore, M.; Lebègue, S.; Badawi, M. Adsorption mechanisms of fatty acids on fluorite unraveled by infrared spectroscopy and first-principles calculations. J. Colloid Interface Sci. 2020, 583, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Ayoob, S.; Gupta, A.K. Fluoride in Drinking Water: A Review on the Status and Stress Effects. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433–487. [Google Scholar] [CrossRef]
- Ren, C.; Yu, Z.; Phillips, B.L.; Wang, H.; Ji, J.; Pan, B.; Li, W. Molecular-scale investigation of fluoride sorption mechanism by nanosized hydroxyapatite using 19F solid-state NMR spectroscopy. J. Colloid Interface Sci. 2019, 557, 357–366. [Google Scholar] [CrossRef]
- Meenakshi, S.; Viswanathan, N. Identification of selective ion-exchange resin for fluoride sorption. J. Colloid Interface Sci. 2007, 308, 438–450. [Google Scholar] [CrossRef]
- Richards, L.A.; Richards, B.S.; Schäfer, A.I. Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis. J. Membr. Sci. 2011, 369, 188–195. [Google Scholar] [CrossRef]
- Labastida, I.; Armienta, M.A.; Beltrán, M.; Caballero, G.; Romero, P.; Rosales, M.A. Limestone as a sustainable remediation option for water contaminated with fluoride. J. Geochem. Explor. 2017, 183, 206–213. [Google Scholar] [CrossRef]
- Lahnid, S.; Tahaikt, M.; Elaroui, K.; Idrissi, I.; Hafsi, M.; Laaziz, I.; Amor, Z.; Tiyal, F.; Elmidaoui, A. Economic evaluation of fluoride removal by electrodialysis. Desalination 2008, 230, 213–219. [Google Scholar] [CrossRef]
- Ali, I.; Raza, M.A.; Mehmood, R.; Islam, A.; Sabir, A.; Gull, N.; Haider, B.; Park, S.H.; Khan, R.U. Novel Maleic Acid, Crosslinked, Nanofibrous Chitosan/Poly (Vinylpyrrolidone) Membranes for Reverse Osmosis Desalination. Int. J. Mol. Sci. 2020, 21, 7338. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Qin, M.; Walker, W.S.; Elimelech, M. Energy Efficiency of Electro-Driven Brackish Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive Deionization. Environ. Sci. Technol. 2020, 54, 3663–3677. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shih, Y.; Wang, P.Y.; Yu, Y.H.; Su, J.F.; Huang, C. Hazardous waste treatment technologies. Water Environ. Res. 2019, 91, 1177–1198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ye, C.; Pi, K.; Huang, J.; Xia, M.; Gerson, A.R. Sustainable treatment of desulfurization wastewater by ion exchange and bipolar membrane electrodialysis hybrid technology. Sep. Purif. Technol. 2019, 211, 330–339. [Google Scholar] [CrossRef]
- Mondal, P.; George, S. A review on adsorbents used for defluoridation of drinking water. Rev. Environ. Sci. Bio/Technol. 2014, 14, 195–210. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Aman, A.K.; Singh, R.K. Equilibrium sorption of fluoride on the activated alumina in aqueous solution. Desalination Water Treat. 2020, 197, 224–236. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ramireddy, H.; Baidya, A.; Amala, A.K.; Sudhakar, C.; Mondal, B.; Philip, L.; Pradeep, T. Nanocellulose-Reinforced Organo-Inorganic Nanocomposite for Synergistic and Affordable Defluoridation of Water and an Evaluation of Its Sustainability Metrics. ACS Sustain. Chem. Eng. 2019, 8, 139–147. [Google Scholar] [CrossRef]
- Revin, V.V.; Pestov, N.A.; Shchankin, M.V.; Mishkin, V.P.; Platonov, V.I.; Uglanov, D.A. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose. Biomacromolecules 2019, 20, 1401–1411. [Google Scholar] [CrossRef]
- Guerrero, A.V.; Alfaro-Cuevas-Villanueva, R.; Rutiaga-Quiñones, J.G.; Cortés-Martínez, R. Fluoride removal by aluminum-modified pine sawdust: Effect of competitive ions. Ecol. Eng. 2016, 94, 365–379. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, P.; Xu, Y.; Jia, X. Mg-Al Mixed Oxide Adsorbent Synthesized Using FCT Template for Fluoride Removal from Drinking Water. Bioinorg. Chem. Appl. 2019, 2019, 5840205. [Google Scholar] [CrossRef] [PubMed]
- Maliyekkal, S.M.; Sharma, A.K.; Philip, L. Manganese-oxide-coated alumina: A promising sorbent for defluoridation of water. Water Res. 2006, 40, 3497. [Google Scholar] [CrossRef]
- Maliyekkal, S.M.; Shukla, S.; Philip, L.; Nambi, I.M. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chem. Eng. J. 2008, 140, 183–192. [Google Scholar] [CrossRef]
- Wajima, T.; Umeta, Y.; Narita, S.; Sugawara, K. Adsorption behavior of fluoride ions using a titanium hydroxide-derived adsorbent. Desalination 2009, 249, 323–330. [Google Scholar] [CrossRef]
- Deng, S.; Liu, H.; Zhou, W.; Huang, J.; Yu, G. Mn–Ce oxide as a high-capacity adsorbent for fluoride removal from water. J. Hazard. Mater. 2011, 186, 1360–1366. [Google Scholar] [CrossRef]
- Revin, V.V.; Dolganov, A.V.; Liyaskina, E.V.; Nazarova, N.B.; Balandina, A.V.; Devyataeva, A.A.; Revin, V.D. Characterizing Bacterial Cellulose Produced byKomagataeibacter sucrofermentans H-110 on Molasses Medium and Obtaining a Biocomposite Based on It for the Adsorption of Fluoride. Polymers 2021, 13, 1422. [Google Scholar] [CrossRef] [PubMed]
- Gopakumar, D.A.; Pasquini, D.; Henrique, M.A.; Morais, L.C.; Grohens, Y.; Thomas, S. Meldrum’s Acid Modified Cellulose Nanofiber-Based Polyvinylidene Fluoride Microfiltration Membrane for Dye Water Treatment and Nanoparticle Removal. Sustain. Chem. Eng. 2017, 5, 2026–2033. [Google Scholar] [CrossRef]
- Vinogradov, M.I.; Makarov, I.S.; Golova, L.K.; Gromovykh, P.S.; Kulichikhin, V.G. Rheological Properties of Aqueous Dispersions of Bacterial Cellulose. Processes 2020, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhang, Q.; Weng, X.; Mang, C.; Si, L.; Guan, Z.; Cheng, L. Fluoride ion adsorption from wastewater using magnesium(II), aluminum(III) and titanium(IV) modified natural zeolite: Kinetics, thermodynamics, and mechanistic aspects of adsorption. J. Water Reuse Desalination 2017, 8, 479–489. [Google Scholar] [CrossRef]
- Sabu, U.; Rashad, M.; Logesh, G.; Kumar, K.; Lodhe, M.; Balasubramanian, M. Development of biomorphic alumina using egg shell membrane as bio-template. Ceram. Int. 2018, 44, 4615–4621. [Google Scholar] [CrossRef]
- Lin, D.; Lopez-Sanchez, P.; Li, R.; Li, Z. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol. 2014, 151, 113–119. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Yang, C.; Gao, L.; Wang, Y.; Tian, X.; Komarneni, S. Fluoride removal by ordered and disordered mesoporous aluminas. Microporous Mesoporous Mater. 2014, 197, 156–163. [Google Scholar] [CrossRef]
- Yami, T.L.; Du, J.; Brunson, L.R.; Chamberlain, J.F.; Sabatini, D.A.; Butler, E.C. Life cycle assessment of adsorbents for fluoride removal from drinking water in East Africa. Int. J. Life Cycle Assess. 2015, 20, 1277–1286. [Google Scholar] [CrossRef]
- Nishchev, K.N.; Novopoltsev, M.I.; Ruzavina, N.A.; Khramov, V.S.; Lyutova, E.N. Measuring the thickness of ALD-fabricated thin films by small-angle X-ray scattering. In Proceedings of the 14th International Baltic Conference on Atomic Layer Deposition (BALD), St. Petersburg, Russia, 2–4 October 2016; pp. 13–14. [Google Scholar] [CrossRef]
- Malygin, A.A. Nanotechnology of molecular layering. Russ. Nanotechnol. 2007, 2, 87–100. [Google Scholar]
- Dolganov, A.V.; Balandina, A.V.; Chugunov, D.B.; Timonina, A.S.; Klimaeva, L.A.; Shingina, V.V.; Knyazev, A.V. Kinetic and Thermodynamic Characteristics of the Sorption of Fluoride Ions Using a Composite Based on Cellulose and Alumina. Russ. J. Phys. Chem. A 2020, 94, 2121–2125. [Google Scholar] [CrossRef]
- Maranescu, B.; Lupa, L.; Visa, A. Synthesis, characterization and rare earth elements adsorption properties of phosphonate metal organic frameworks. Appl. Surf. Sci. 2019, 481, 83–91. [Google Scholar] [CrossRef]
- Subramani, B.S.; Shrihari, S.; Manu, B.; Babunarayan, K.S. Evaluation of pyrolyzed areca husk as a potential adsorbent for the removal of Fe2+ ions from aqueous solutions. J. Environ. Manag. 2019, 246, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Darezereshki, E.; Darban, A.K.; Abdollahy, M.; Jamshidi-Zanjani, A. Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: Kinetics and thermodynamic. Environ. Nanotechnol. Monit. Manag. 2018, 10, 51–62. [Google Scholar] [CrossRef]
- Fischer, L.; Harlé, V.; Kasztelan, S.; de la Caillerie, J.-B.D. Identification of fluorine sites at the surface of fluorinated γ-alumina by two-dimensional MAS NMR. Solid State Nucl. Magn. Reson. 2000, 16, 85–91. [Google Scholar] [CrossRef]
T, K | 310 | 298 | 283 |
---|---|---|---|
, mol/L | 1.88 × 10−4 | 2.08 × 10−4 | 2.38 × 10−4 |
Kc = /(C0 − ) | 2.508 | 3.744 | 9.672 |
k | 3.80 × 10−4 | 9.41 × 10−5 | 6.0 × 10−5 |
k1 | 2.72 × 10−4 | 7.43 × 10−5 | 5.44 × 10−5 |
k2 | 1.08 × 10−4 | 1.98 × 10−5 | 5.62 × 10−6 |
T, K | Kc | ΔH°, kJ/mol | ΔG°, kJ/mol | ΔS°, J/molK |
---|---|---|---|---|
298 | 3.744363 | −36.931 | −3.271 | −112.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolganov, A.V.; Revin, V.D.; Kostryukov, S.G.; Revin, V.V.; Yang, G. Kinetic and Thermodynamic Characteristics of Fluoride Ions Adsorption from Solution onto the Aluminum Oxide Nanolayer of a Bacterial Cellulose-Based Composite Material. Polymers 2021, 13, 3421. https://doi.org/10.3390/polym13193421
Dolganov AV, Revin VD, Kostryukov SG, Revin VV, Yang G. Kinetic and Thermodynamic Characteristics of Fluoride Ions Adsorption from Solution onto the Aluminum Oxide Nanolayer of a Bacterial Cellulose-Based Composite Material. Polymers. 2021; 13(19):3421. https://doi.org/10.3390/polym13193421
Chicago/Turabian StyleDolganov, Alexander V., Vadim D. Revin, Sergey G. Kostryukov, Viktor V. Revin, and Guang Yang. 2021. "Kinetic and Thermodynamic Characteristics of Fluoride Ions Adsorption from Solution onto the Aluminum Oxide Nanolayer of a Bacterial Cellulose-Based Composite Material" Polymers 13, no. 19: 3421. https://doi.org/10.3390/polym13193421
APA StyleDolganov, A. V., Revin, V. D., Kostryukov, S. G., Revin, V. V., & Yang, G. (2021). Kinetic and Thermodynamic Characteristics of Fluoride Ions Adsorption from Solution onto the Aluminum Oxide Nanolayer of a Bacterial Cellulose-Based Composite Material. Polymers, 13(19), 3421. https://doi.org/10.3390/polym13193421