The Adaptive Power of Ammophila arenaria: Biomimetic Study, Systematic Observation, Parametric Design and Experimental Tests with Bimetal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomimetic Study
2.1.1. Scope and Discover
2.1.2. Observe Nature: Organisms Characteristics
2.1.3. Observe Nature: Systematic Observation
Observation Study I
Observation Study II
2.1.4. Conceptualize
3. Results
3.1. Observing Nature Study I
3.2. Analogy and Beginning Conceptualization Phase
- Leaf-rolling mechanism.
- The location of the bulliform cells in the epidermis determines the leaf closing pattern.
- Lengthwise cone-leaf closure shape, in which the ends of the base and top arch tend to meet and form a circle when closed.
- Cross-section morphology, where the adaxial side is ribbed and densely covered by hairs.
3.2.1. Parametric Leaf-Blade System
- a fixed point or starting point (located at the angle of the circle π rad).
- a control point or terminal point, located at angle 3*π/2.
- a control point at angle π/2 (which identifies the tangent vector).
3.2.2. Observation Study II
- Standard CS20: obeys the same proportions identified in the A. arenaria cross-sections analysis and contains twenty markings.
- Standard CS14: an extended version of the CS20 pattern, which contains fourteen markings.
3.2.3. Experiments with Bimetal
4. Discussion
- Crease patterns: with experiments that take into account different amounts of creases and at different angles.
- Performance of creases: testing the material’s limitations, how far we can expand its thermo-responsive performance and minimize its fragility. Consequently, we must analyze the bending process to form the crease; the productive process—manual and digital, and fatigue resistance test —to prevent unexpected behavior.
- Performance of the height of the modules: to restrict the movement towards the active side of the layer, and so providing control of the material’s behavior for opening when heated and closing when cooling.
- Combination of the bimetal with static and responsive materials: to find solutions that reduce both the use of non-biodegradable materials and power consumption in built environments.
- Smart geometries: In line with the creases in the active layer, explore complex shapes to optimize the bimetal deflection and develop a formal solution based on performance-based design. Finally, future works will propose a shading system for the facade that contributes to optimizing thermal comfort and natural lighting.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arruda, A. Métodos e Processos em Biônica e Biomimética: A Revolução Tecnológica pela Natureza; Blucher: São Paulo, Brasil, 2018; p. 260. [Google Scholar]
- Kuru, A.; Oldfield, P.; Bonser, S.; Fiorito, F. Biomimetic Adaptive Building Skins: Energy and Environmental Regulation in Buildings. Energy Build. 2019, 205, 109544. [Google Scholar] [CrossRef]
- Mazzoleni, I. Architecture Follows Nature: Biomimetic Principles for Innovative Design; CRC Press: London, UK, 2013; p. 254. [Google Scholar]
- Oliveira, M. Towards a Bio-Shading System Concept Design Methodology. Ph.D. Thesis, Instituto Universitário de Lisboa, School of Technology and Architecture, Lisboa, Portugal, December 2019. [Google Scholar]
- Fiorito, F.; Sauchelli, M.; Arroyo, D.; Pesenti, M.; Imperadori, M.; Masera, G.; Ranzi, G. Shape Morphing Solar Shadings: A Review. Renew. Sustain. Energy Rev. 2016, 55, 863–884. [Google Scholar] [CrossRef]
- Laracuente, N. Programmable Biomimetics. In Proceedings of the 4th International Conference for Biodigital Architecture & Genetics, Barcelona, Spain, 4 June 2020; Estévez, A., Ed.; iBAG-UIC: Barcelona, Spain, 2020; pp. 175–184. [Google Scholar]
- Charpentier, V.; Hannequart, P.; Adriaenssens, S.; Baverel, O.; Viglino, E.; Eisenman, S. Kinematic Amplification Strategies in Plants and Engineering. Smart Mater. Struct. 2017, 26, 063002. [Google Scholar] [CrossRef]
- Vazquez, E.; Randall, C.; Duarte, J. Shape-changing architectural skins a review on materials, design and fabrication strategies and performance analysis. J. Facade Des. Eng. 2019, 7, 91–102. [Google Scholar] [CrossRef]
- Oxman, R. Thinking Difference: Theories and Models of Parametric Design Thinking. Des. Stud. 2017, 52, 4–39. [Google Scholar] [CrossRef]
- DO|SU Studio Architecture. Available online: https://www.dosu-arch.com/bloom (accessed on 20 April 2021).
- Kirimtat, A.; Kundakci, B.; Chatzikonstantinou, I.; Sariyildiz, S. Review of Simulation Modeling for Shading Devices in Buildings. Renew. Sustain. Energy Rev. 2016, 53, 23–49. [Google Scholar] [CrossRef]
- Gadelhak, M. A Computational Framework fo12r the Optimization of the Environmental Performance of Facades in Early Design Stages. Doctoral’s Thesis, Technischen Universität München, München, Germany, 10 April 2019. [Google Scholar]
- Badarnah, L.; Usama, K. A methodology for the generation of biomimetic design concepts. Taylor Fr. Group 2014, 37–41. [Google Scholar] [CrossRef]
- López, M.; Rubio, R.; Martín, S.; Croxford, B. How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703. [Google Scholar] [CrossRef]
- Biomimicry 3.8. Biomimicry DesignLens: A Visual Guide; Biomimicry 3.8: Missoula, MT, USA, 2015; p. 12. [Google Scholar]
- Sack-Nielsen, T. Performance through Thickfolds: Approaching Climate-Responsive Behaviours through Shape, Materialisation and Kinematics. Ph.D. Thesis, Aarhus School of Architecture, Aarhus, Denmark, 5 May 2017. [Google Scholar]
- Sung, D. Smart geometries for smart materials: Taming thermobimetals to behave. J. Archit. Educ. 2016, 70, 96–106. [Google Scholar] [CrossRef]
- Vieira, A.; Borba, C.; Rodrigues, J. Cobogó de Pernambuco; Josivan Rodrigues: Recife, Brasil, 2013; p. 120. [Google Scholar]
- Camacho, D.; Sacht, H.; Vettorazzi, E. Brick vents to cobogó: History of use in Brazilian architecture and considerations regarding its adaptation to climate. PARC Pesqui. Arquitetura Construção 2018, 8, 205–216. [Google Scholar] [CrossRef]
- Marshall, S.; Ward, M. The Breeze Block Book; Uro Publications: Melbourne, Australia, 2019; p. 184. [Google Scholar]
- World Weather & Climate Information. Climate and Average Monthly Weather in Lisbon (Lisbon Region), Portugal. Available online: https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,lisbon,Portugal (accessed on 18 May 2021).
- Instituto Português do Mar e da Atmosfera. Área Educativa: Clima de Portugal Continental. IPMA. Available online: https://www.ipma.pt/pt/educativa/tempo.clima/ (accessed on 19 January 2019).
- Andrade, T.; Beirão, J.; Arruda, A.; Araújo, R.; Soares, T. Overview of Nastic Movements in Plants: A data collection for developing responsive facades. In Proceedings of the 4th International Conference for Biodigital Architecture & Genetics, Barcelona, Spain, 4 June 2020; Estévez, A., Ed.; iBAG-UIC: Barcelona, Spain, 2020; pp. 212–221. [Google Scholar]
- Schleicher, S.; Lienhard, J.; Poppinga, S.; Speck, T.; Knippers, J. A methodology for transferring principles of plant movements to elastic systems in Architecture. CAD Comput. Aided Des. 2015, 60, 105–117. [Google Scholar] [CrossRef]
- Rivière, M.; Derr, J.; Douady, S. Motions of Leaves and Stems, from Growth to Potential Use. Phiysical Biol. 2017, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Chergui, A.; Hafid, L.; Melhaoui, M. Characteristics of Marram Grass (Ammophila arenaria L.), Plant of the Coastal Dunes of the Mediterranean Eastern Morocco: Ecological, Morpho-Anatomical and Physiological Aspects. J. Mater. Environ. Sci. 2017, 8, 3759–3765. [Google Scholar]
- Huiskes, A. Ammophila arenaria (L.) Link (Psamma Arenaria (L.) Roem. et Schult.; Calamgrostis Arenaria (L.) Roth). J. Ecol. 1979, 67, 363–382. [Google Scholar] [CrossRef]
- Costa, J.; Cunha, M. Atlas Da Flora Da Serra D’água à Foz do Âncora; Município Viana do Castelo: Viana do Castelo, Portugal, 2019; p. 592. [Google Scholar]
- Sociedade Portuguesa de Botânica. Flora On. Available online: https://flora-on.pt/ (accessed on 25 May 2020).
- Rodríguez-Echeverría, S.; Freitas, H.; Putten, P. Genetic diversity and differentiation of Ammophila arenaria (L.) Link as revealed by ISSR Markers. J. Coast. Res. 2008, 24, 122–126. [Google Scholar] [CrossRef]
- Gadgil, R. Marram Grass: Friend or Foe? A Review of the Use of Ammophila arenaria on New Zealand Sand Dunes; New Zealand Forest Research Institute Limited: Rotorua, New Zealand, 2006; p. 36. [Google Scholar]
- Kadioglu, A.; Terzi, R.; Saruhan, N.; Saglam, A. Current Advances in the Investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci. 2012, 182, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Rascio, N.; Carfagna, S.; Esposito, S.; Rocca, N.; Gullo, M.; Trost, P.; Vona, V. Elementi Di Fisiologia Vegetale; Edises: Napoli, Italy, 2012; p. 400. [Google Scholar]
- Grigore, M.; Ivanescu, L.; Toma, C. Halophyte: An Integrative Anatomical Study; L Springer International Publishing Switzerland: London, UK, 2014; p. 544. [Google Scholar]
- Science Photo Library. Available online: https://www.sciencephoto.com/ (accessed on 13 December 2020).
- Gonçalves, H.; Graça, J. Conceitos Bioclimáticos para os Edifícios em Portugal; DGGE/IP-3E: Lisboa, Portugal, 2004; p. 52. [Google Scholar]
- Andrade, T.; Arruda, A.; Araújo, R.; Vicente, M. Sessão de Cocriação: Para repensar o elemento construtivo cobogó por inspiração biológica. In Proceedings of the ENSUS 2021: IX Encontro de Sustentabilidade em Projeto, Florionópolis, Brasil, 17 May 2021; Librelotto, L., Ferroli, P., Eds.; UFSC/VIRTUHAB: Florianopólis, Brasil, 2021; pp. 136–148. [Google Scholar]
- Kanthal. Kanthal Thermostatic Bimetal Handbook; Kanthal AB: Hallstahammar, Sweden, 2008; p. 126. [Google Scholar]
- Ritter, A. Smart Materials: In architecture, Interior Architecture and Design; Birkhäuser—Publishers for Architecture: Washington, DC, USA, 2007; p. 189. [Google Scholar]
- Foged, I.; Pasold, A. Performative Responsive Architecture Powered by Climate. In Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), New York, NY, USA, 21–24 October 2010. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, T.A.B.d.; Beirão, J.N.D.C.; Arruda, A.J.V.d.; Cruz, C. The Adaptive Power of Ammophila arenaria: Biomimetic Study, Systematic Observation, Parametric Design and Experimental Tests with Bimetal. Polymers 2021, 13, 2554. https://doi.org/10.3390/polym13152554
Andrade TABd, Beirão JNDC, Arruda AJVd, Cruz C. The Adaptive Power of Ammophila arenaria: Biomimetic Study, Systematic Observation, Parametric Design and Experimental Tests with Bimetal. Polymers. 2021; 13(15):2554. https://doi.org/10.3390/polym13152554
Chicago/Turabian StyleAndrade, Tarciana Araújo Brito de, José Nuno Dinis Cabral Beirão, Amilton José Vieira de Arruda, and Cristina Cruz. 2021. "The Adaptive Power of Ammophila arenaria: Biomimetic Study, Systematic Observation, Parametric Design and Experimental Tests with Bimetal" Polymers 13, no. 15: 2554. https://doi.org/10.3390/polym13152554
APA StyleAndrade, T. A. B. d., Beirão, J. N. D. C., Arruda, A. J. V. d., & Cruz, C. (2021). The Adaptive Power of Ammophila arenaria: Biomimetic Study, Systematic Observation, Parametric Design and Experimental Tests with Bimetal. Polymers, 13(15), 2554. https://doi.org/10.3390/polym13152554