Phase and Structure Behavior vs. Electromechanical Performance of Electrostrictive P(VDF-HFP)/ZnO Composite Nanofibers
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Preparation
2.2. Characterization
2.2.1. Surface Topography
2.2.2. Elemental Analysis
2.2.3. Crystalline Structure and Phase Investigation
2.2.4. Dynamic Mechanical Analysis
2.2.5. Mechanical Properties
2.2.6. Electrical Properties
2.2.7. Electrostriction
2.2.8. Energy Conversion Ability
3. Results and Discussion
3.1. Surface Morphology and Elemental Analysis
3.2. Crystalline Structure and Phase Investigation
3.3. Mechanical Properties
3.4. Electrical Properties
3.5. Electrostriction Behavior
3.6. Energy-Harvesting Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Farajollahi, M.; Choi, Y.S.; Lin, I.T.; Marshall, J.E.; Thompson, N.M.; Kar-Narayan, S.; Madden, J.D.; Smoukov, S.K. Electroactive polymers for sensing. Interface Focus 2016, 6, 20160026. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, R.; Li, P.; Gao, A.; San, X.; Zhang, X.; Qi, X.; Fan, Q.; Liu, Y.; Liu, X.; et al. Soft bimorph actuator with real-time multiplex motion perception. Nano Energy 2020, 76, 104926. [Google Scholar] [CrossRef]
- Sun, F.; Tian, M.; Sun, X.; Xu, T.; Lin, X.; Zhu, S.; Zhang, X.; Qu, L. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett. 2019, 19, 6592. [Google Scholar] [CrossRef]
- Hu, X.; Tian, M.; Xu, T.; San, X.; Sun, B.; Sun, C.; Liu, X.; Zhang, X.; Qu, L. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. Nano 2020, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ouyang, J.; Raza, T.; Li, P.; Jian, A.; Li, Z.; Liu, H.; Chen, M.; Zhang, X.; Qu, L.; et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy 2021, 85, 105941. [Google Scholar] [CrossRef]
- Brochu, P.; Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 2010, 31, 10. [Google Scholar] [CrossRef] [PubMed]
- Bar-Cohen, Y.; Zhang, Q. Electroactive polymer actuators and sensors. MRS Bull. 2011, 33, 173. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Stoyanov, H.; Hu, W.; Leo, R.; Brochu, P.; Pei, Q. Synthesizing a New Dielectric Elastomer Exhibiting Large Actuation Strain and Suppressed Electromechanical Instability without Prestretching. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 197. [Google Scholar] [CrossRef]
- Petcharoen, K.; Sirivat, A. Electrostrictive properties of thermoplastic polyurethane elastomer: Effects of urethane type and softehard segment composition. Curr. Appl. Phys. 2013, 13, 1119. [Google Scholar] [CrossRef]
- Tohluebaji, N.; Putson, C.; Muensit, N. Enhanced electroactive β-phase formation and dielectric properties of piezoelectric electrospun nanofibers by ZnO nanoparticles. Mater. Today Proc. 2019, 17, 1637. [Google Scholar] [CrossRef]
- Tohluebaji, N.; Putson, C.; Muensit, N. High Electromechanical Deformation Based on Structural Beta-Phase Content and Electrostrictive Properties of Electrospun Poly(vinylidene fluoride- hexafluoropropylene) Nanofibers. Polymers 2019, 11, 1817. [Google Scholar] [CrossRef] [Green Version]
- Jaaoh, D.; Putson, C.; Muensit, N. Enhanced strain response and energy harvesting capabilities of electrostrictive polyurethane composites filled with conducting polyaniline. Compos. Sci. Technol. 2016, 122, 97. [Google Scholar] [CrossRef]
- Ardimas; Chatchai, P.; Muensit, N. High electromechanical performance of modified electrostrictive polyurethane three-phase composites. Compos. Sci. Technol. 2018, 158, 164. [Google Scholar] [CrossRef]
- Ma, Y.; Tong, W.; Wang, W.; An, Q.; Zhang, Y. Montmorillonite/PVDF-HFP-based energy conversion and storage films with enhanced piezoelectric and dielectric properties. Compos. Sci. Technol. 2018, 168, 397. [Google Scholar] [CrossRef]
- Yuennan, J.; Sukwisute, P.; Boripet, B.; Muensit, N. Phase transformation, surface morphology and dielectric property of P(VDF-HFP)/MgCl2⋅6H2O Nanocomposites. J. Phys. Conf. Ser. 2017, 901, 012085. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Srinivas, V.; Madras, G.; Bose, S. Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: Assessing through piezoresponse force microscopy. RSC Adv. 2016, 6, 6251. [Google Scholar] [CrossRef]
- Wu, L.; Yuan, W.; Hu, N.; Wang, Z.; Chen, C.; Qiu, J.; Ying, J.; Li, Y. Improved piezoelectricity of PVDF-HFP/carbon black composite films. J. Phys. D Appl. Phys. 2014, 47, 135302. [Google Scholar] [CrossRef]
- Thakur, P.; Kool, A.; Bagchi, B.; Hoque, N.A.; Das, S.; Nandy, P. Improvement of electroactive β phase nucleation and dielectric properties of WO3·H2O nanoparticle loaded poly(vinylidene fluoride) thin films. RSC Adv. 2015, 5, 62819. [Google Scholar] [CrossRef]
- Dhakras, D.; Borkar, V.; Ogale, S.; Jog, J. Enhanced piezoresponse of electrospun PVDF mats with a touch of nickel chloride hexahydrate salt. Nanoscale 2012, 4, 752. [Google Scholar] [CrossRef]
- Garain, S.; Jana, S.; Sinha, T.K.; Mandal, D. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl. Mater. Interfaces 2016, 8, 4532. [Google Scholar] [CrossRef] [PubMed]
- Parangusan, H.; Ponnamma, D.; Al-Maadeed, M.A.A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 2018, 8, 754. [Google Scholar] [CrossRef] [PubMed]
- Bafqi, M.S.S.; Bagherzadeh, R.; Latifi, M. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J. Polym. Res. 2015, 22, 130. [Google Scholar] [CrossRef]
- Cottinet, P.J.; Lallart, M.; Guyomar, D.; Guiffard, B.; Lebrun, L.; Sebald, G.; Putson, C. Analysis of AC-DC conversion for energy harvesting using an electrostrictive polymer P(VDF-TrFE-CFE). IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 30. [Google Scholar] [CrossRef] [PubMed]
- Doddapaneni, V.; Saleemi, M.; Ye, F.; Gati, R.; Toprak, M.S. Engineered PMMA-ZnO nanocomposites for improving the electric arc interruption capability in electrical switching applications: Unprecedented experimental insights. Compos. Sci. Technol. 2017, 141, 113. [Google Scholar] [CrossRef]
- Hu, P.; Gao, S.; Zhang, Y.; Zhang, L.; Wang, C. Surface modified BaTiO3 nanoparticles by titanate coupling agent induce significantly enhanced breakdown strength and larger energy density in PVDF nanocomposite. Compos. Sci. Technol. 2018, 156, 109. [Google Scholar] [CrossRef]
- Karan, S.K.; Mandal, D.; Khatua, B.B. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: An excellent material for a piezoelectric energy harvester. Nanoscale 2015, 7, 10655. [Google Scholar] [CrossRef] [PubMed]
- Sencadas, V.; Gregorio, R.; Lanceros-Méndez, S. α to β phase transformation and microestructural changes of PVDF Films induced by uniaxial stretch. J. Macromol. Sci. Part B 2009, 48, 514. [Google Scholar] [CrossRef]
- Low, Y.K.A.; Tan, L.Y.; Tan, L.P.; Boey, F.Y.C.; Ng, K.W. Increasing solvent polarity and addition of salts promote β-phase poly(vinylidene fluoride) formation. J. Appl. Polym. Sci. 2013, 128, 2902. [Google Scholar] [CrossRef]
- Mano, J.F.; Sencadas, V.; Costa, A.M.; Lanceros-Méndez, S. Dynamic mechanical analysis and creep behaviour of β-PVDF films. Mater. Sci. Eng. A 2004, 370, 336. [Google Scholar] [CrossRef] [Green Version]
- Patro, T.U.; Mhalgi, M.V.; Khakhar, D.V.; Misra, A. Studies on poly(vinylidene fluoride)–clay nanocomposites: Effect of different clay modifiers. Polymer 2008, 49, 3486. [Google Scholar] [CrossRef]
- Nain, R.; Jassal, M.; Agrawal, A.K. Polymeric nanofiber composites with aligned ZnO nanorods. Compos. Sci. Technol. 2013, 86, 9. [Google Scholar] [CrossRef]
- Du, C.-H.; Zhu, B.-K.; Xu, Y.-Y. The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends. J. Mater. Sci. 2006, 41, 417. [Google Scholar] [CrossRef]
- Bikiaris, D.N.; Nianias, N.P.; Karagiannidou, E.G.; Docoslis, A. Effect of different nanoparticles on the properties and enzymatic hydrolysis mechanism of aliphatic polyesters. Polym. Degrad. Stab. 2012, 97, 2077. [Google Scholar] [CrossRef]
- Komalan, C.; George, K.E.; Kumar, P.A.S.; Varughese, K.T.; Thomas, S. Dynamic mechanical analysis of binary and ternary polymer blends based on nylon copolymer/EPDM rubber and EPM grafted maleic anhydride compatibilizer. Express Polym. Lett. 2007, 1, 641. [Google Scholar] [CrossRef]
- Putson, C.; Jaaoh, D.; Meauma, N.; Muensit, N. Effect of micro- and nano-particle fillers at low percolation threshold on the dielectric and mechanical properties of polyurethane/copper composites. J. Inorg. Organomet. Polym. Mater. 2012, 22, 1300. [Google Scholar] [CrossRef]
- Wongtimnoi, K.; Guiffard, B.; de Moortèle, A.B.; Seveyrat, L.; Gauthier, C.; Cavaillé, J.Y. Improvement of electrostrictive properties of a polyether-based polyurethane elastomer filled with conductive carbon black. Compos. Sci. Technol. 2011, 71, 885. [Google Scholar] [CrossRef] [Green Version]
- Jaaoh, D.; Putson, C.; Muensit, N. Deformation on segment-structure of electrostrictive polyurethane/polyaniline blends. Polymer 2015, 61, 123. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Malakooti, M.H.; Patterson, B.A.; Sodano, H.A. Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric. Compos. Sci. Technol. 2015, 107, 75. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Fang, M.; Wang, C.; Xiao, Y.; Pu, Y. Enhancement of dielectric and electrical properties in BFN/Ni/PVDF three-phase composites. Compos. Sci. Technol. 2017, 146, 139. [Google Scholar] [CrossRef]
- Guiffard, B.; Guyomar, D.; Seveyrat, L.; Chowanek, Y.; Bechelany, M.; Cornu, D.; Miele, P. Enhanced electroactive properties of polyurethane films loaded with carbon-coated SiC nanowires. J. Phys. D Appl. Phys. 2009, 42, 055503. [Google Scholar] [CrossRef]
- Zhang, J.W.; Lebrun, L.; Guiffard, B.; Cottinet, P.J.; Belouadah, R.; Guyomar, D.; Garbuio, L. Influence of corona poling on the electrostrictive behavior of cellular poolyprpylene films. Sens. Actuators A Phys. 2012, 175, 87. [Google Scholar] [CrossRef]
- Cottinet, D.G.P.; Guiffard, B.; Putson, C.; Lebrun, L. Modeling and experimentation on an electrostrictive polymer composite for energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 774. [Google Scholar] [CrossRef] [PubMed]
- Nawaka, K.; Putson, C. Enhanced electric field induced strain in electrostrictive polyurethane composites fibers with polyaniline (emeraldine salt) spider-web network. Compos. Sci. Technol. 2020, 198, 108293. [Google Scholar] [CrossRef]
- Lebrun, L.; Guyomar, D.; Guiffard, B.; Cottinet, P.J.; Putson, C. The characterisation of the harvesting capabilities of an electrostrictive polymer composite. Sens. Actuators A Phys. 2009, 153, 251. [Google Scholar] [CrossRef]
- Eddiai, A.; Meddad, M.; Sbiaai, K.; Boughaleb, Y.; Hajjaji, A.; Guyomar, D. A new technique for maximizing the energy harvested using electrostrictive polymer composite. Opt. Mater. 2013, 36, 13. [Google Scholar] [CrossRef]
Sample (wt%) | Xc (%) | F(β) (%) | %β |
---|---|---|---|
P(VDF-HDP) Pure | 47.35 | 72.72 | 34.43 |
P(VDF-HFP)/ZnO 5 wt% | 53.42 | 74.94 | 40.03 |
P(VDF-HFP)/ZnO 10 wt% | 56.81 | 75.73 | 42.57 |
P(VDF-HFP)/ZnO 15 wt% | 59.52 | 75.89 | 45.17 |
P(VDF-HFP)/ZnO 20 wt% | 62.35 | 76.03 | 47.40 |
Sample (Nanofibers) | 1 Hz | Y (MPa) | M33 (×10−15) (m2/V2) 2 V/μm, 1 Hz | (×10−11) |
---|---|---|---|---|
P(VDF-HDP) Pure | 5.28 | 4.8 | 0.37 | 0.97 |
P(VDF-HFP)/ZnO 5 wt% | 6.42 | 5.0 | 0.53 | 1.14 |
P(VDF-HFP)/ZnO 10 wt% | 8.00 | 5.1 | 0.77 | 1.39 |
P(VDF-HFP)/ZnO 15 wt% | 8.46 | 5.2 | 0.84 | 1.44 |
P(VDF-HFP)/ZnO 20 wt% | 11.63 | 5.3 | 0.89 | 1.94 |
Sample (Nanofibers) | 20 Hz | Y (MPa) | M31 (20 Hz) (×10−18) (m2/V2) | Power Density (nW/cm3) |
---|---|---|---|---|
P(VDF-HDP) Pure | 1.31 | 4.8 | 3.19 | 500.00 |
P(VDF-HFP)/ZnO 5 wt% | 1.37 | 5.0 | 3.73 | 605.00 |
P(VDF-HFP)/ZnO 10 wt% | 1.87 | 5.1 | 4.05 | 781.25 |
P(VDF-HFP)/ZnO 15 wt% | 2.08 | 5.2 | 4.51 | 937.50 |
P(VDF-HFP)/ZnO 20 wt% | 2.20 | 5.3 | 4.58 | 1201.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tohluebaji, N.; Thainiramit, P.; Putson, C.; Muensit, N. Phase and Structure Behavior vs. Electromechanical Performance of Electrostrictive P(VDF-HFP)/ZnO Composite Nanofibers. Polymers 2021, 13, 2565. https://doi.org/10.3390/polym13152565
Tohluebaji N, Thainiramit P, Putson C, Muensit N. Phase and Structure Behavior vs. Electromechanical Performance of Electrostrictive P(VDF-HFP)/ZnO Composite Nanofibers. Polymers. 2021; 13(15):2565. https://doi.org/10.3390/polym13152565
Chicago/Turabian StyleTohluebaji, Nikruesong, Panu Thainiramit, Chatchai Putson, and Nantakan Muensit. 2021. "Phase and Structure Behavior vs. Electromechanical Performance of Electrostrictive P(VDF-HFP)/ZnO Composite Nanofibers" Polymers 13, no. 15: 2565. https://doi.org/10.3390/polym13152565
APA StyleTohluebaji, N., Thainiramit, P., Putson, C., & Muensit, N. (2021). Phase and Structure Behavior vs. Electromechanical Performance of Electrostrictive P(VDF-HFP)/ZnO Composite Nanofibers. Polymers, 13(15), 2565. https://doi.org/10.3390/polym13152565