Synthesis of a Reactive Template-Induced Core–Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PZS@ZIF-67
2.3. Preparation of Epoxy Composites
2.4. Characterization
3. Results
3.1. Structural Characterization of PZS@ZIF-67 Composites
3.2. Dispersion of PZS@ZIF-67 in Epoxy Composites
3.3. Thermal Stability of Epoxy Composites
3.4. Fire Safety of Epoxy Composites
3.5. Condensed Phase Analysis
3.6. Vapor Phase Analysis
3.7. Mechanical Properties of Epoxy Composites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gu, H.; Guo, J.; Wei, H.; Guo, S.; Liu, J.; Huang, Y.; Khan, M.A.; Wang, X.; Young, D.P.; Wei, S.; et al. Strengthened magnetoresistive epoxy nanocomposite papers derived from synergistic nanomagnetite-carbon nanofiber nanohybrids. Adv. Mater. 2015, 27, 6277–6282. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Tang, G.; Chen, J.; Huang, Z.; Hu, Y. Biobased polyelectrolyte mnltilayer-coated hollow mesoporons silica as a green flame retardant for epoxy resin. J. Hazard. Mater. 2018, 342, 689–697. [Google Scholar] [CrossRef]
- Buketov, A.; Maruschak, P.; Sapronov, O.; Brailo, M.; Leshchenko, O.; Bencheikh, L.; Menou, A. Investigation of thermophysical properties of epoxy nanocomposites. Mol. Cryst. Liq. Cryst. 2016, 628, 167–179. [Google Scholar] [CrossRef]
- Buketov, A.; Maruschak, P.; Sapronov, O.; Zinchenko, D.; Yatsyuk, V.; Panin, S. Enhancing performance characteristics of equipment of sea and river transport by using epoxy composites. Transport 2016, 31, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zhang, L.; Zhao, X.; Wang, D. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity. Chem. Sci. 2017, 8, 3399–3409. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Zhou, Y.; Zhou, X.; Zhang, T.; Wang, C.; Yuen, R.K.K.; Hu, W.; Hu, Y. Air-stable polyphosphazene-fimctionalized few-layer black phosphorene for flame retardancy of epoxy resins. Small 2019, 15, 1805175. [Google Scholar] [CrossRef]
- Mu, X.; Wang, D.; Pan, Y.; Cai, W.; Song, L.; Hu, Y. A facileapproach to prepare phosphorus and nitrogen containing macromolecular covalent organic nanosheets for enhancing flame retardancy and mechanical property of epoxy resin. Compos. Part B 2019, 164, 390–399. [Google Scholar] [CrossRef]
- Cao, H.; Zheng, H.; Yin, J.; Lu, Y.; Wu, S.; Wu, X.; Li, B. Mg(OH)2 Complex Nanostructures with Superhydrophobicity and Flame Retardant Effects. J. Phys. Chem. C 2010, 114, 17362–17368. [Google Scholar] [CrossRef]
- Huo, S.; Yang, S.; Wang, J.; Cheng, J.; Zhang, Q.; Hu, Y.; Ding, G.; Zhang, Q.; Song, P. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances. J. Hazard. Mater. 2020, 386, 121984. [Google Scholar] [CrossRef]
- Horacek, H.; Grabner, R. Advantages of flame retardants based on nitrogen compounds Polymer. Degrad. Stab. 1996, 54, 205–215. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Y.; Ban, D.; Liu, X.; Zhou, Q. Burning behavior and pyrolysis products of flame-retardant PET containing sulfur-containing aryl polyphosphonate. J. Anal. Appl. Pyrolysis 2006, 76, 198–202. [Google Scholar] [CrossRef]
- Laufer, G.; Kirkland, C.; Morgan, A.B.; Grunlan, J.C. Exceptionally Flame Retardant Sulfur-Based Multilayer Nanocoating for Polyurethane Prepared from Aqueous Polyelectrolyte Solutions. ACS Macro Lett. 2013, 2, 361–365. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Guo, X.; Yang, R.; Li, X. Effects of an Organic-Inorganic Hybrid Containing Allyl Benzoxazine and POSS on Thermal Properties and Flame Retardancy of Epoxy Resin. Polymers 2019, 11, 770. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Qiu, S.; Yu, B.; Xing, W.; Yuan, S. POSS-functionalized polyphosphazene nanotube: Preparation and effective reinforcement on UVcurable epoxy acrylate nanocomposite coatings. RSC Adv. 2016, 6, 3025–3031. [Google Scholar] [CrossRef]
- Lin, C.; Chou, Y.; Shiao, W.; Wang, M. High temperature, flame-retardant, and transparent epoxy thermosets prepared from an acetovanillone-based hydroxyl poly(ether sulfone) and commercial epoxy resins. Polymers 2016, 97, 300–308. [Google Scholar] [CrossRef]
- He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 2020, 114, 100687. [Google Scholar] [CrossRef]
- Qiu, S.; Xing, W.; Feng, X.; Yu, B.; Mu, X.; Yuen, R.K.K.; Hu, Y. Self-standing cuprous oxide nanoparticles on silica@polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chem. Eng. J. 2017, 309, 802–814. [Google Scholar] [CrossRef]
- Allcock, H.R. The expanding field of polyphosphazene high polymers. Dalton Trans. 2016, 45, 1856–1862. [Google Scholar] [CrossRef]
- Albright, V.; Selin, V.; Hlushko, H.; Palanisamy, A.; Marin, A.; Andrianov, A.K.; Sukhishvili, S.A. Fluorinated Polyphosphazene Coatings Using Aqueous Nano-Assembly of Polyphosphazene Polyelectrolytes. ACS Symp. Ser. 2018, 1298, 101–118. [Google Scholar] [CrossRef]
- Ogueri, K.S.; Allcock, H.R.; Laurencin, C.T. Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly (lactic-co-glycolic acid). Prog. Polym. Sci. 2019, 98, 101146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; He, M.; Xu, J.; Ma, H. Synthesis of a functionalised phosphazene-containing nanotube/epoxy nanocomposite with enhanced flame retardancy. Micro Nano Lett. 2017, 12, 401–403. [Google Scholar] [CrossRef]
- Pan, T.; Huang, X.; Wei, H.; Wei, W.; Tang, X. Intrinsically Fluorescent Microspheres with Superior Thermal Stability and Broad Ultraviolet-Visible Absorption Based on Hybrid Polyphosphazene Material. Macromol. Chem. Phys. 2012, 213, 1590–1595. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, Y.; Yuan, W.; Xi, J.; Huang, X.; Tang, X.; Zheng, S. One-Pot Synthesis of Poly (cyclotriphosphazene-co-4, 4’-sulfonyldiphenol) Nanotubes via an In Situ Template Approach. Adv. Mater. 2006, 18, 2997–3000. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Geng, X.; Gao, X.; Zhang, X.; Yang, D.; Xu, J.; Ma, H. Platinum loaded cyclomatrix polyphosphazene submicrospheres improve fire retardancy of epoxy with very low addition. Compos. Commun. 2019, 11, 27–30. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Liu, D.; Yan, C.; Zhu, Y. A novel and facile fabrication of polyphosphazene nanotube/carbon fiber multi-scale hybrid reinforcement and its enhancing effect on the interfacial properties of epoxy composites. Compos. Sci. Technol. 2019, 169, 34–44. [Google Scholar] [CrossRef]
- Wang, M.; Fu, J.; Huang, D.; Zhang, C.; Xu, Q. Silver nanoparticles-decorated polyphosphazene nanotubes: Synthesis and applications. Nanoscale 2013, 5, 7913–7919. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Han, L.; Zheng, D.; Yang, M.; Andaloussi, Y.H.; Cheng, P.; Zhang, Z.; Ma, S.; Zaworotko, M.J.; Feng, Y.; et al. Protein Structure-Directed Metal-Organic Zeolite-Like Networks as Biomacromolecule Carriers Angew. Chem. Int. Ed. 2020, 59, 6263–6267. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, H.; Meng, T.; Liao, K.; Meng, W.; Yang, J.; He, D.; Xiong, Y.; Mu, S.F. Cu-Coordinated ZIF-Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc-Air Batteries. Adv. Funct. Mater. 2018, 28, 1802596. [Google Scholar] [CrossRef]
- Fang, Y.; Luan, D.; Chen, Y.; Gao, S.; Lou, X. Synthesis of Copper-Substituted CoS2@CuxS Double-Shelled Nanoboxes via Sequential Ion-Exchange for Efficient Sodium Storage. Angew. Chem. Int. Ed. 2020, 59, 2644–2648. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Gao, X.; Xu, X.; Jiang, Y.; Gao, X.; Yin, R.; Shi, W.; Liu, W.; Lu, G.; Cao, X. MnO2 Nanosheet-Assembled Hollow Polyhedron Grown on Carbon Cloth for Flexible Aqueous Zinc-Ion Batteries. ChemSusChem 2020, 13, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kumar, P.; Mittal, N.; Khlyustova, A.; Daoutidis, P.; Mkhoyan, K.A.; Tsapatsis, M. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 2018, 361, 1008–1011. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.; Wu, Y.; Zhou, S.; Wei, Y.; Caro, J.; Wang, H. Ultra-Tuning of the Aperture Size in Stiffened ZIF-8_Cm Frameworks with Mixed-Linker Strategy for Enhanced CO2/CH4 Separation. Angew. Chem. Int. Ed. 2019, 58, 327–331. [Google Scholar] [CrossRef]
- Guo, C.; Xu, S.; Arshad, A.; Wang, L. A pH-responsive Nanoprobe for Turn-On 19F-Magnetic Resonance Imaging. Chem. Commun. 2018, 54, 9853–9856. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Tang, W.; Wang, G.; Nath, B.; Xu, G. MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance. Adv. Mater. 2016, 28, 5229–5234. [Google Scholar] [CrossRef]
- Liang, W.; Xu, H.; Carraro, F.; Maddigan, N.K.; Li, Q.; Bell, S.G.; Huang, D.M.; Tarzia, A.; Solomon, M.B.; Amenitsch, H.; et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal−Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 2348–2355. [Google Scholar] [CrossRef]
- Gao, W.; Wang, S.; Ma, H.; Wang, Y.; Meng, F. Combined Situ Polymerization and Thermal Cross-Linking Technique for the Preparation of Ammonium Polyphosphate Microcapsules with Composite Shell. J. Phys. Chem. C 2015, 119, 28999–29005. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, B.; Nie, J.; Ma, G. Reactive template-induced core-shell FeCo@C microspheres as multifunctional electrocatalysts for rechargeable zinc-air batteries. Nanoscale 2018, 10, 17021–17029. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, B.; Cui, Y.; Xu, S.; Gong, J. Core-Shell Structured Cyclodextrin Metal- Organic Frameworks with Hierarchical Dye Encapsulation for Tunable Light Emission. Chem. Mater. 2019, 31, 1289–1295. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, X.; Fu, J.; Huang, Y.; Zhu, Y.; Tang, X. A One-Pot Approach to Novel Cross-Linked Polyphosphazene Microspheres with Active Amino Groups. Macromol. Chem. Phys. 2009, 210, 792–798. [Google Scholar] [CrossRef]
- Örüm, S.M. Novel cyclomatrix polyphosphazene nanospheres: Preparation, characterization and dual anticancer drug release application. Polym. Bull. 2021, 1–19. [Google Scholar] [CrossRef]
- Liu, W.; Huang, X.; Wei, H.; Chen, K.; Gao, J.; Tang, X. Facile preparation of hollow crosslinked polyphosphazene submicrospheres with mesoporous shells. J. Mater. Chem. 2011, 21, 12964–12968. [Google Scholar] [CrossRef]
- Song, K.; Wang, Y.; Fang, Z.; Liu, J.; Ruan, F. Controllable Preparation and Characterizations of ZIF-67/Polyphosphazene Composite Microspheres. China Plast. 2021, 35, 1–7. (In Chinese) [Google Scholar]
- Wang, Y.; Jiang, C.; Le, Y.; Cheng, B.; Yu, J. Hierarchical honeycomb-like Pt/NiFe-LDH/rGO nanocomposite with excellent formaldehyde decomposition activity. Chem. Eng. J. 2019, 365, 378–388. [Google Scholar] [CrossRef]
- Zhou, X.; Mu, X.; Cai, W.; Wang, J.; Chu, F.; Xu, Z.; Song, L.; Xing, W.; Hu, Y. Design of Hierarchical NiCo-LDH@PZS Hollow Dodecahedron Architecture and Application in High-Performance Epoxy Resin with Excellent Fire Safety. ACS Appl. Mater. Interfaces 2019, 11, 41736–41749. [Google Scholar] [CrossRef] [PubMed]
- Stukhlyak, P.D.; Mytnyk, M.M.; Orlov, V.O. Influence of Boundary Interlayers on Properties of Composite Polymeric Materials (a Review). Mater. Sci. 2001, 37, 80–86. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, W.; Yang, P.; Hu, J.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Metal-phenolic network green flame retardants. Polymers 2021, 221, 123627. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Batool, S.; Song, L.; Hu, Y. A phosphaphenanthrene-containing vanillin derivative as co-curing agent for flame-retardant and antibacterial epoxy thermoset. Polymers 2021, 217, 123460. [Google Scholar] [CrossRef]
- Wang, N.; Chen, S.; Li, L.; Bai, Z.; Guo, J.; Qin, J.; Chen, X.; Zhao, R.; Zhang, K.; Wu, H. An Environmentally Friendly Nanohybrid Flame Retardant with Outstanding Flame-Retardant Efficiency for Polypropylene. J. Phys. Chem. C 2021, 125, 5185–5196. [Google Scholar] [CrossRef]
Sample | T5% (°C) | Tmax (°C) | Residues at 800 °C (%) |
---|---|---|---|
PZS@ZIF-67 | 483 | 517 | 60.2 |
PZS | 463 | 520 | 55.5 |
ZIF-67 | 364 | 510 & 558 | 34.8 |
Sample | T5% (°C) | Tmax (°C) | Residues at 600 °C (%) | Residues at 800 °C (%) |
---|---|---|---|---|
Pristine EP | 380.7 | 396.2 | 16.18 | 14.60 |
EP/1% PZS | 351.7 | 394.8 | 17.09 | 15.64 |
EP/1% PZS@ZIF 67 | 361.0 | 395.5 | 16.80 | 14.90 |
EP/3% PZS | 338.3 | 385.8 | 23.91 | 22.56 |
EP/3% PZS@ZIF-67 | 352.3 | 392.7 | 19.82 | 18.35 |
EP/5% PZS | 337.0 | 370.3 | 25.65 | 24.27 |
EP/5% PZS@ZIF-67 | 344.7 | 377.6 | 24.79 | 23.27 |
Sample | Epoxy Resin | DDM | PZS | PZS@ZIF-67 |
---|---|---|---|---|
Pristine EP | 60 | 15 | - | - |
EP-5% PZS | 60 | 0 | 3.16 | - |
EP-5% PZS@ZIF-67 | 60 | 0 | - | 3.16 |
EP/5% PZS | 60 | 15 | 3.95 | - |
EP/5% PZS@ZIF-67 | 60 | 15 | - | 3.95 |
Sample | LOI (%) | UL-94 | |
---|---|---|---|
Rating | Dripping | ||
Pristine EP | 25.5 | No rating | Yes |
EP/1% PZS | 28.8 | No rating | Yes |
EP/1% PZS@ZIF-67 | 30.1 | No rating | Yes |
EP/3% PZS | 30.5 | No rating | No |
EP/3% PZS@ZIF-67 | 31.2 | V-1 | No |
EP/5% PZS | 31.5 | V-0 | No |
EP/5% PZS@ZIF-67 | 31.9 | V-0 | No |
Parameter | pHRR (kW/m2) | THR (MJ/m2) at 200 s | TSP (m2) at 200 s | Char Residue (%) | FIGRA (kW m−2 s−1) | |
---|---|---|---|---|---|---|
Sample | ||||||
Pristine EP | 1156.16 | 78.16 | 26.01 | 2.83 | 13.72 | |
EP/1% PZS | 998.45 | 69.72 | 23.87 | 9.69 | 10.08 | |
EP/1% PZS@ZIF-67 | 957.56 | 70.53 | 23.28 | 11.77 | 10.05 | |
EP/3% PZS | 799.13 | 65.34 | 20.43 | 13.59 | 9.87 | |
EP/3% PZS@ZIF-67 | 748.09 | 64.50 | 20.67 | 14.21 | 6.70 | |
EP/5% PZS | 640.69 | 61.29 | 17.11 | 15.95 | 7.92 | |
EP/5% PZS@ZIF-67 | 565.59 | 56.07 | 16.16 | 16.74 | 6.72 |
Signal | Binding Energy (eV) | Area | |||||
---|---|---|---|---|---|---|---|
Pristine EP | EP/5% PZS | EP/5%PZS@ZIF-67 | |||||
Exterior Char | Interior Char | Exterior Char | Interior Char | Exterior Char | Interior Char | ||
C 1s (C-H,C-C) | 284.6 | 87.66 | 82.1 | 84.09 | 79.24 | 81.68 | |
C 1s (C-O) | 286.8 | ||||||
C 1s (C=O) | 288.4 | ||||||
O 1s | 7.97 | 9.19 | 8.15 | 11.77 | 11.37 | ||
P 2p | - | 5.32 | 2.80 | 4.23 | 2.68 | ||
N 1s | 4.38 | 3.39 | 4.96 | 4.09 | 3.97 | ||
Co 2p | - | - | - | 0.66 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Wang, Y.; Ruan, F.; Yang, W.; Fang, Z.; Zheng, D.; Li, X.; Li, N.; Qiao, M.; Liu, J. Synthesis of a Reactive Template-Induced Core–Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites. Polymers 2021, 13, 2646. https://doi.org/10.3390/polym13162646
Song K, Wang Y, Ruan F, Yang W, Fang Z, Zheng D, Li X, Li N, Qiao M, Liu J. Synthesis of a Reactive Template-Induced Core–Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites. Polymers. 2021; 13(16):2646. https://doi.org/10.3390/polym13162646
Chicago/Turabian StyleSong, Kunpeng, Yinjie Wang, Fang Ruan, Weiwei Yang, Zhuqing Fang, Dongsen Zheng, Xueli Li, Nianhua Li, Meizhuang Qiao, and Jiping Liu. 2021. "Synthesis of a Reactive Template-Induced Core–Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites" Polymers 13, no. 16: 2646. https://doi.org/10.3390/polym13162646
APA StyleSong, K., Wang, Y., Ruan, F., Yang, W., Fang, Z., Zheng, D., Li, X., Li, N., Qiao, M., & Liu, J. (2021). Synthesis of a Reactive Template-Induced Core–Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites. Polymers, 13(16), 2646. https://doi.org/10.3390/polym13162646