Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup
Abstract
:1. Introduction
1.1. Oil Spillage as an Environmental and Economic Challenge
1.2. Current Solutions and Materials Used for Oil Spill Clean-Up
1.3. Lignocelluloses Are Promising Alternatives
2. Introduction to Lignocellulose and Nanocellulose
3. Surface Modification of Cellulose and Nanocellulose
3.1. Silylation
3.2. Carbon
3.3. Other Methods
4. Processing of Cellulose and Nanocellulose to 3D and 2D Materials
4.1. Sol-Gel Preparation
4.2. Stabilization of the Gel
4.2.1. Chemical Crosslinkers
4.2.2. Polymeric Matrix Stabilizers
4.3. Drying Processes for Aerogel Formation
4.3.1. Supercritical CO2 Drying
4.3.2. Vacuum Freeze Drying
4.4. Alternative Preparation Methods
5. Performance of Lignocellulosic Materials for Oil Spill Cleanup
5.1. Three-Dimensional (3D) Materials: Aerogels and Foams
5.1.1. Separation Mechanism
5.1.2. Material Performance
Comparability of Different Materials
Correlation between Adsorption Capacity and Porosity/Density
Correlation between Adsorption Capacity and Surface-Related Properties
Filter-Like 3D Materials
5.1.3. Recovery and Reusability
5.2. Two-Dimensional (2D) Materials: Membranes, Fabrics and Meshes
5.2.1. Separation Mechanism
5.2.2. Material Performance of Membranes
5.2.3. Material Performance of Fabrics
Cellulose Type/Mesh Material | Hydrophobic Modification | Pore Diameter [µm] | Porosity [%] | WCA */UWCA [°] | Flux [L m−2 h−1] | Separation Efficiency [%] | Number of Recovery Cycles | Ref. |
---|---|---|---|---|---|---|---|---|
hydrogel | ||||||||
-- | -- | 50 | -- | 151 | 12,885 | 98.2 | 60 | [214] |
nylon | hydroxylation | 150 | 15,840 | 99.99 | 12 | [215] | ||
stainless steel | -- | 80 | 72 | 156 | 38,064 | 98.9 | 10 | [216] |
nanocrystals | ||||||||
stainless steel | silanization | 175 | 75 | 163 * | -- | 95 | 40 | [217] |
copper | hydroxylation | 25 | -- | 155 | 35,000 | -- | 12 | [218] |
filter paper | hydroxylation | 20 | -- | 150 | 4000 | -- | 12 | [218] |
nanofiber | ||||||||
steel | silanization | 150 | 61 | 160 * | -- | 99 | 50 | [219] |
filter paper | silanization | 220 | 53 | 156 * | 38,064 | 98.9 | -- | [220] |
acetate | ||||||||
cellulose | -- | 280 | -- | -- | 400,000 | 96 | -- | [221] |
cellulose | hydroxylation | 280 | 73 | -- | 160,000 | 99 | 20 | [222] |
polyamide | plasma treatment | 64 | -- | 155 | -- | 99.6 | 25 | [223] |
composite fiber | cellulose/polymer composite | 20 | 84 | -- | 1910 | 97.3 | 10 | [224] |
Membrane Material/Cellulose Type | Hydrophobic Modification | Pore Diameter [µm] | Membrane Thickness [µm] | Porosity [%] | WCA */UWCA [°] | Flux [L m−2 h−1] | Separation Efficiency [%] | Number of Recovery Cycles | Ref. |
---|---|---|---|---|---|---|---|---|---|
Cellulose | |||||||||
CA | polymerization | 360 | -- | -- | 155 * | 3000 | 99 | 3 | [194] |
CA | -- | 470 | 303 | 45.1 | 154 * | 20 | -- | -- | [172] |
CA | -- | -- | 18.8 | 67 | 162 * | 3106 | 99 | 10 | [225] |
CA | -- | 40 | 50 | -- | 161 * | -- | -- | -- | [195] |
eucalyptus pulp | grafting | -- | -- | -- | 130 * | -- | 97.6 | 5 | [182] |
filter paper | chemical modification | 18 | -- | -- | 152 * | 960 | 96.7 | 20 | [175] |
filter paper | hydroxylation | -- | -- | -- | 150 * | 70 | 98.7 | 10 | [186] |
filter paper | grafting | -- | 1000 | -- | 160 * | 2350 | -- | 5 | [176] |
nanofibers | spray coating | -- | -- | -- | 144 * | -- | 94.5 | 7 | [169] |
CA | screen printing | -- | 450 | -- | 150 | -- | 83 | -- | [188] |
CA | deacetylated | -- | -- | -- | 137 | 38,000 | 99.9 | 50 | [171] |
CA | -- | 12 | 83 | 79 | -- | 772 | 99 | -- | [184] |
CA | wet phase-inversion method | -- | -- | -- | 157 | 20 | 99.4 | -- | [177] |
CA | ultrasonication | 70 | 250 | -- | -- | 1217 | 93.2 | -- | [226] |
CA | -- | 100 | -- | -- | -- | 435 | 99.8 | 3 | [196] |
CA | -- | 150 | -- | 70 | -- | 97,200 | 98 | -- | [227] |
CA | -- | 450 | -- | -- | 151 | 1910 | 98 | 6 | [181] |
CA | grafting | -- | 240 | -- | -- | 110 | 100 | 3 | [183] |
filter paper | chemical modification | -- | -- | -- | 140 | 750 | -- | 4 | [174] |
nanocrystals | vacuum-assisted filtration | 70 | 0.6 | -- | 176 | 1734 | 90 | 10 | [190] |
nanofibers | -- | 20 | 0.1 | -- | -- | 272 | 99.5 | 3 | [192] |
nanofibers | grafting | -- | -- | -- | 166 | 200 | 99.1 | 20 | [170] |
nanofibers | deposition | 129 | -- | -- | 165 | 3730 | 99 | -- | [228] |
nanofibers | -- | -- | 100 | 83 | 155 | 960 | 97.3 | 10 | [187] |
nanofibers | grafting | -- | -- | -- | 160 | -- | -- | 5 | [229] |
powder | -- | -- | 0.112 | -- | 150 | 1620 | 92.5 | -- | [230] |
-- | -- | 50 | 54 | 83.2 | -- | 4000 | 90 | -- | [193] |
-- | -- | 160 | -- | 86 | -- | 26 | 99.9 | -- | [231] |
cotton | |||||||||
fibers | polydopamine (PDA) nanoparticles | -- | -- | -- | 150 | 22,200 | 99.98 | 10 | [167] |
linter pulp | lower critical solution temperature (LCST) system | 312 | -- | -- | 165 | 200 | 99 | 10 | [168] |
fabric | |||||||||
nanocrystals | -- | -- | 220 | -- | 134 | -- | 98 | 3 | [191] |
nanocrystals | vacuum-assisted filtration method | 80 | 95 | 43 | 153 | 99 | 99.2 | 6 | [189] |
filters | |||||||||
cigarette filters | dip-coating | -- | -- | -- | 155 * | -- | 98.8 | 30 | [180] |
methylcellulose | chemical bath deposition method | -- | 90 | -- | 150 * | 1055 | -- | 10 | [178] |
qualitative filter paper | combining in growth technique | 15,000 | 340 | -- | 155 * | 537 | 94.4 | 50 | [232] |
qualitative filter paper | SA | 15,000 | 340 | -- | 154 * | -- | 95.1 | 50 | [233] |
EC | ultraviolet induced crosslinking | -- | -- | -- | -- | 4332 | -- | -- | [185] |
paper fiber | deposition on the surface by alternating soaking process (ASP) | -- | 0.22 | -- | 162 | 550 | 99 | 20 | [179] |
peanut shell | -- | -- | 51 | -- | -- | -- | -- | -- | [234] |
Cellulose Type/Fabrics Type | Hydrophobic Modification | WCA * [°] | Flux [L m−2 h−1] | Separation Efficiency [%] | Recovery Method **/Cycles/Capacity after | Ref. |
---|---|---|---|---|---|---|
Cotton | ||||||
plain weave fabric | silanization | 151 * | -- | 98 | DW/10/95% | [199] |
raw fabric | silanization | 164 * | -- | 99.95 | E/40/99.5% | [205] |
raw fabric | silanization | 142 * | 74,161 | 96 | DW/50/96% | [207] |
raw fabric | silanization | 159 * | 114,744 | 99.5 | UW/--/-- | [206] |
raw fabric | silanization | 152.7 * | 30,000 | 99 | --/10/99.4% | [235] |
raw fabric | salt solution | 150 * | 4000 | 93.2 | --/--/-- | [208] |
raw fabric | silanization | 138 * | -- | 99 | W/7/95% | [200] |
raw fabric | Cu nanostructured | 150 * | -- | 98 | FW/30/97% | [209] |
raw fabric | Cu nanostructured | 151.5 * | -- | 96 | E/20/-- | [204] |
raw fabric | silanization | 150 * | -- | 99 | SC/40/99% | [210] |
nonwoven fabric | silanization | 155 * | -- | 97 | SC/100/97.5% | [211] |
microfibers | silanization | 150 * | -- | 94 | E/7/94% | [236] |
raw fabric | silanization | 150 * | 1749.7 | 97.9 | SC/100/97.5% | [197] |
raw fabric | silanization | 160 * | -- | SC/20/-- | [201] | |
raw fabric | grafting | 164 * | -- | 96.5 | SC/10/-- | [202] |
raw fabric | silanization | 154 * | 2688 | 96.2 | E + DW/10/92% | [237] |
raw fabric | isopropylacrylamide and acrylic acid | 160 * | -- | 99.5 | --/4/99.5% | [213] |
raw fabric | silanization | 151.5 * | -- | 95 | E/20/98% | [238] |
cellulosic | ||||||
raw fabric | silanization | 150 * | 41,800 | 90 | DW/4/89% | [239] |
raw fabric | silanization | 164 * | 53,000 | 98 | --/10/98% | [198] |
raw fabric | silanization | 155 * | 3400 | 98 | DW/20/-- | [240] |
pristine | ||||||
textile fabric | lauric acid (LA)-TiO2 composites and Fe3O4-NPs | 153 * | 5700 | 99 | E + DW/25/98% | [241] |
textile fabric | silanization | 154 * | 4500 | 97 | E/50/97% | [242] |
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Jovancic, P. Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere 2008, 70, 525–530. [Google Scholar] [CrossRef]
- Adebajo, M.O.; Frost, R.L.; Kloprogge, J.T.; Carmody, O.; Kokot, S. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J. Porous Mater. 2003, 10, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Crone, T.J.; Tolstoy, M. Magnitude of the 2010 Gulf of Mexico oil leak. Science 2010, 330, 634. [Google Scholar] [CrossRef] [Green Version]
- Lindén, O.; Jernelöv, A. Krigets Miljöeffekter; Nya Doxa: Nora, Sweden, 1999. [Google Scholar]
- Jernelöv, A. The threats from oil spills: Now, then, and in the future. Ambio 2010, 39, 353–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, R.; MacDonald, I.R.; Kvenvolden, K. Estimates of total hydrocarbon seepage into the Gulf of Mexico based on satellite remote sensing images. EOS Suppl. 1999, 80, OS242. [Google Scholar]
- Kvenvolden, K.A. Revised Assessment of the Rate at Which Crude Oil Seeps Naturally into the Ocean. Available online: https://www.searchanddiscovery.com/documents/abstracts/hedberg2002/kvenvolden01/kvenvolden01.htm (accessed on 8 August 2021).
- Peterson, C.H.; Rice, S.D.; Short, J.W.; Esler, D.; Bodkin, J.L.; Ballachey, B.E.; Irons, D.B. Long-term ecosystem response to the Exxon Valdez oil spill. Science 2003, 302, 2082–2086. [Google Scholar] [CrossRef] [Green Version]
- Dave, D.; Ghaly, A.E. Remediation technologies for marine oil spills: A critical review and comparative analysis. Am. J. Environ. Sci. 2011, 7, 423. [Google Scholar] [CrossRef] [Green Version]
- Swannell, R.P.; Lee, K.; McDonagh, M. Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 1996, 60, 342–365. [Google Scholar] [CrossRef]
- Davidson, W.F.; Lee, K.; Cogswell, A. Oil Spill Response: A Global Perspective; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Ding, Z.; Kloprogge, J.T.; Frost, R.L.; Lu, G.Q.; Zhu, H.Y. Porous clays and pillared clays-based catalysts. Part 2: A review of the catalytic and molecular sieve applications. J. Porous Mater. 2001, 8, 273–293. [Google Scholar] [CrossRef]
- Teas, C.; Kalligeros, S.; Zanikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G. Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 2001, 140, 259–264. [Google Scholar] [CrossRef]
- Banerjee, S.S.; Joshi, M.V.; Jayaram, R.V. Treatment of oil spill by sorption technique using fatty acid grafted sawdust. Chemosphere 2006, 64, 1026–1031. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Singh, O.V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 2008, 35, 377–391. [Google Scholar] [CrossRef]
- Mehanny, S.; Abu-El Magd, E.E.; Ibrahim, M.; Farag, M.; Gil-San-Millan, R.; Navarro, J.; El Habbak, A.E.H.; El-Kashif, E. Extraction and Characterization of Nanocellulose from Three Types of Palm Residues. J. Mater. Res. Technol. 2021, 10, 526–537. [Google Scholar] [CrossRef]
- Xia, Z.; Li, J.; Zhang, J.; Zhang, X.; Zheng, X.; Zhang, J. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J. Bioresour. Bioprod. 2020, 5, 79–95. [Google Scholar] [CrossRef]
- Doshi, B.; Sillanpää, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 2018, 135, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B.; Sagarika, V.K.; Sabu, C.; Kalarikkal, N.; Thomas, S. Cellulose nanocomposites: Fabrication and biomedical applications. J. Bioresour. Bioprod. 2020, 5, 223–237. [Google Scholar] [CrossRef]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Lavoine, N.; Bergström, L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A 2017, 5, 16105–16117. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Geng, B.; Chen, Y.; Wang, H. Review on the Aerogel-Type Oil Sorbents Derived from Nanocellulose. ACS Sustain. Chem. Eng. 2017, 5, 49–66. [Google Scholar] [CrossRef]
- Xu, H.; Fan, T.; Ye, N.; Wu, W.; Huang, D.; Wang, D.; Wang, Z.; Zhang, L. Plasticization effect of bio-based plasticizers from soybean oil for tire tread rubber. Polymers 2020, 12, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.-J.; Yuen, A.C.Y.; Li, A.; Lin, B.; Chen, T.B.Y.; Yang, W.; Lu, H.-D.; Yeoh, G.H. Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose 2019, 26, 6449–6476. [Google Scholar] [CrossRef]
- Stamm, A.J. Wood and Cellulose Science; Ronald Press Co.: New York, NY, USA, 1964. [Google Scholar]
- Mehanny, S.; Ibrahim, H.; Darwish, L.; Farag, M.; El-Habbak, A.-H.M.; El-Kashif, E. Effect of Environmental Conditions on Date Palm Fiber Composites. In Date Palm Fiber Composites; Springer: Singapore, 2020; pp. 287–320. [Google Scholar]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chemie Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Adler, E. Lignin chemistry—past, present and future. Wood Sci. Technol. 1977, 11, 169–218. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Glasser, W.G.; Sarkanen, S. Lignin, properties and materials. In Assessment of Biobased Materials; U.S. Department of Energy: Washington, DC, USA, 1989. [Google Scholar]
- Lavanya, D.; Kulkarni, P.K.; Dixit, M.; Raavi, P.K.; Krishna, L.N.V. Sources of cellulose and their applications—A review. Int. J. Drug Formul. Res. 2011, 2, 19–38. [Google Scholar]
- Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. (Eds.) Methods for Extraction of Nanocellulose from Various Sources. In Handbook of Nanocellulose and Cellulose Nanocomposites, 1st ed.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2017; pp. 1–49. [Google Scholar]
- Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crop. Prod. 2016, 93, 2–25. [Google Scholar] [CrossRef]
- Trache, D.; Hussin, M.H.; Haafiz, M.K.M.; Thakur, V.K. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 2017, 9, 1763–1786. [Google Scholar] [CrossRef] [Green Version]
- Rånby, B.G. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss. Faraday Soc. 1951, 11, 158–164. [Google Scholar] [CrossRef]
- Mao, J.; Abushammala, H.; Brown, N.; Laborie, M.-P. Comparative assessment of methods for producing cellulose I nanocrystals from cellulosic sources. Nanocellul. Their Prep. Prop. Appl. 2017, 1251, 19–53. [Google Scholar]
- Abushammala, H.; Krossing, I.; Laborie, M.-P. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr. Polym. 2015, 134, 609–616. [Google Scholar] [CrossRef]
- Jozala, A.F.; de Lencastre-Novaes, L.C.; Lopes, A.M.; de Carvalho Santos-Ebinuma, V.; Mazzola, P.G.; Pessoa, A., Jr.; Grotto, D.; Gerenutti, M.; Chaud, M.V. Bacterial nanocellulose production and application: A 10-year overview. Appl. Microbiol. Biotechnol. 2016, 100, 2063–2072. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.; Raj, M.C.; Joy, J.; Moores, A.; Drisko, G.L.; Sanchez, C. Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem. Rev. 2018, 118, 11575–11625. [Google Scholar] [CrossRef]
- Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 2014, 43, 1519–1542. [Google Scholar] [CrossRef]
- Abushammala, H.; Mao, J. A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono-and di-isocyanates. Molecules 2019, 24, 2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehanny, S.; Magd, E.E.A.-E.; Sorbara, S.; Navarro, J.; Gil-San-Millan, R. Spanish Poplar Biomass as a Precursor for Nanocellulose Extraction. Appl. Sci. 2021, 11, 6863. [Google Scholar] [CrossRef]
- Luo, H.; Cha, R.; Li, J.; Hao, W.; Zhang, Y.; Zhou, F. Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr. Polym. 2019, 224, 115144. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.V.; Pinheiro, I.F.; de Souza, S.F.; Mei, L.H.I.; Lona, L.M.F. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review. J. Compos. Sci. 2019, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Abushammala, H.; Hashaikeh, R.; Cooney, C. Microcrystalline cellulose powder tableting via networked cellulose-based gel material. Powder Technol. 2012, 217, 16–20. [Google Scholar] [CrossRef]
- Voisin, H.; Bergström, L.; Liu, P.; Mathew, A.P. Nanocellulose-based materials for water purification. Nanomaterials 2017, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Agate, S.; Joyce, M.; Lucia, L.; Pal, L. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites—A review. Carbohydr. Polym. 2018, 198, 249–260. [Google Scholar] [CrossRef]
- Li, F.; Mascheroni, E.; Piergiovanni, L. The potential of nanocellulose in the packaging field: A review. Packag. Technol. Sci. 2015, 28, 475–508. [Google Scholar] [CrossRef]
- Spence, K.; Habibi, Y.; Dufresne, A. Nanocellulose-based composites. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2011; pp. 179–213. [Google Scholar]
- Hisseine, O.A.; Wilson, W.; Sorelli, L.; Tolnai, B.; Tagnit-Hamou, A. Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Constr. Build. Mater. 2019, 206, 84–96. [Google Scholar] [CrossRef]
- Haafiz, M.K.M.; Hassan, A.; Khalil, H.P.S.A.; Fazita, M.R.N.; Islam, M.S.; Inuwa, I.M.; Marliana, M.M.; Hussin, M.H. Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int. J. Biol. Macromol. 2016, 85, 370–378. [Google Scholar] [CrossRef]
- Chen, Z.; An, C.; Yin, J.; Owens, E.; Lee, K.; Zhang, K.; Tian, X. Exploring the use of cellulose nanocrystal as surface-washing agent for oiled shoreline cleanup. J. Hazard. Mater. 2021, 402, 123464. [Google Scholar] [CrossRef]
- Peng, H.; Wang, H.; Wu, J.; Meng, G.; Wang, Y.; Shi, Y.; Liu, Z.; Guo, X. Preparation of Superhydrophobic Magnetic Cellulose Sponge for Removing Oil from Water. Ind. Eng. Chem. Res. 2016, 55, 832–838. [Google Scholar] [CrossRef]
- Rafieian, F.; Hosseini, M.; Jonoobi, M.; Yu, Q. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 2018, 25, 4695–4710. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Liu, L.; Yuan, W. Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials. Carbohydr. Polym. 2017, 173, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yuan, W. Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification. ACS Appl. Mater. Interfaces 2017, 9, 29167–29176. [Google Scholar] [CrossRef]
- Xiao, J.; Lv, W.; Song, Y.; Zheng, Q. Graphene/nanofiber aerogels: Performance regulation towards multiple applications in dye adsorption and oil/water separation. Chem. Eng. J. 2018, 338, 202–210. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Xu, Y.; Lu, Z.; Chen, L.; Huang, L.; Fan, M. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Phys. Chem. Chem. Phys. 2016, 18, 28297–28306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervin, N.T.; Aulin, C.; Larsson, P.T.; Wågberg, L. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 2012, 19, 401–410. [Google Scholar] [CrossRef]
- Tripathi, A.; Parsons, G.N.; Rojas, O.J.; Khan, S.A. Featherlight, mechanically robust cellulose ester aerogels for environmental remediation. ACS Omega 2017, 2, 4297–4305. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.Y.; Jing, X.; Politowicz, A.L.; Chen, E.; Huang, H.X.; Turng, L.S. Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 2018, 132, 199–209. [Google Scholar] [CrossRef]
- Zhou, S.; You, T.; Zhang, X.; Xu, F. Superhydrophobic Cellulose Nanofiber-Assembled Aerogels for Highly Efficient Water-in-Oil Emulsions Separation. ACS Appl. Nano Mater. 2018, 1, 2095–2103. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Xu, G.; Xu, Y.; Wang, F.; Shen, H. Ultralight, hydrophobic, sustainable, cost-effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents. J. Hazard. Mater. 2021, 406, 124758. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, Z.; Tang, H.; Zhou, J. Fabrication of hydrophobic cellulosic materials via gas–solid silylation reaction for oil/water separation. Cellulose 2019, 26, 4021–4037. [Google Scholar] [CrossRef]
- Mi, H.Y.; Jing, X.; Huang, H.X.; Peng, X.F.; Turng, L.S. Superhydrophobic Graphene/Cellulose/Silica Aerogel with Hierarchical Structure as Superabsorbers for High Efficiency Selective Oil Absorption and Recovery. Ind. Eng. Chem. Res. 2018, 57, 1745–1755. [Google Scholar] [CrossRef]
- Luo, H.; Xie, J.; Wang, J.; Yao, F.; Yang, Z.; Wan, Y. Step-by-step self-assembly of 2D few-layer reduced graphene oxide into 3D architecture of bacterial cellulose for a robust, ultralight, and recyclable all-carbon absorbent. Carbon 2018, 139, 824–832. [Google Scholar] [CrossRef]
- Long, S.; Feng, Y.; Liu, Y.; Zheng, L.; Gan, L.; Liu, J.; Zeng, X.; Long, M. Renewable and robust biomass carbon aerogel derived from deep eutectic solvents modified cellulose nanofiber under a low carbonization temperature for oil-water separation. Sep. Purif. Technol. 2021, 254, 117577. [Google Scholar] [CrossRef]
- Wang, Y.; Yadav, S.; Heinlein, T.; Konjik, V.; Breitzke, H.; Buntkowsky, G.; Schneider, J.J.; Zhang, K. Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv. 2014, 4, 21553–21558. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Gao, C.; Zhou, X.; Du, A.; Naik, N.; Guo, Z. Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater. 2021, 1–10. [Google Scholar] [CrossRef]
- Calcagnile, P.; Caputo, I.; Cannoletta, D.; Bettini, S.; Valli, L.; Demitri, C. A bio-based composite material for water remediation from oily contaminants. Mater. Des. 2017, 134, 374–382. [Google Scholar] [CrossRef]
- Nie, X.; Lv, P.; Stanley, S.L.; Wang, D.; Wu, S.; Wei, Q. Ultralight nanocomposite aerogels with interpenetrating network structure of bacterial cellulose for oil absorption. J. Appl. Polym. Sci. 2019, 136, 1–8. [Google Scholar] [CrossRef]
- Korhonen, J.T.; Kettunen, M.; Ras, R.H.A.; Ikkala, O. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces 2011, 3, 1813–1816. [Google Scholar] [CrossRef]
- Chin, S.F.; Romainor, A.N.B.; Pang, S.C. Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater. Lett. 2014, 115, 241–243. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Lu, Z.; Chen, L.; Huang, L.; Fan, M. A robust superhydrophobic TiO2 NPs coated cellulose sponge for highly efficient oil-water separation. Sci. Rep. 2017, 7, 3–10. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, L.; Zhang, T.; Qiu, F.; Yue, X.; Yang, D. Sustainable, Flexible, and Superhydrophobic Functionalized Cellulose Aerogel for Selective and Versatile Oil/Water Separation. ACS Sustain. Chem. Eng. 2019, 7, 9984–9994. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, W. Superhydrophobic three-dimensional porous ethyl cellulose absorbent with micro/nano-scale hierarchical structures for highly efficient removal of oily contaminants from water. Carbohydr. Polym. 2018, 191, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, L.; Wang, H.; Bian, Z. Preparation of MCC/MC Silica Sponge and Its Oil/Water Separation Apparatus Application. Ind. Eng. Chem. Res. 2017, 56, 5795–5801. [Google Scholar] [CrossRef]
- Zhang, H.; Lyu, S.; Zhou, X.; Gu, H.; Ma, C.; Wang, C.; Ding, T.; Shao, Q.; Liu, H.; Guo, Z. Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J. Colloid Interface Sci. 2019, 536, 245–251. [Google Scholar] [CrossRef]
- Meng, G.; Peng, H.; Wu, J.; Wang, Y.; Wang, H.; Liu, Z.; Guo, X. Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fibers Polym. 2017, 18, 706–712. [Google Scholar] [CrossRef]
- Gu, H.; Zhou, X.; Lyu, S.; Pan, D.; Dong, M.; Wu, S.; Ding, T.; Wei, X.; Seok, I.; Wei, S.; et al. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J. Colloid Interface Sci. 2020, 560, 849–856. [Google Scholar] [CrossRef]
- Xu, X.; Dong, F.; Yang, X.; Liu, H.; Guo, L.; Qian, Y.; Wang, A.; Wang, S.; Luo, J. Preparation and Characterization of Cellulose Grafted with Epoxidized Soybean Oil Aerogels for Oil-Absorbing Materials. J. Agric. Food Chem. 2019, 67, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Xiao, S.; Gan, W.; Liu, Q.; Amer, H.; Rosenau, T.; Li, J.; Lu, Y. Mussel Adhesive-Inspired Design of Superhydrophobic Nanofibrillated Cellulose Aerogels for Oil/Water Separation. ACS Sustain. Chem. Eng. 2018, 6, 9047–9055. [Google Scholar] [CrossRef]
- Peng, D.; Li, H.; Li, W.-J.; Zheng, L. Biosorbent with superhydrophobicity and superoleophilicity for spilled oil removal. Ecotoxicol. Environ. Saf. 2021, 209, 111803. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, L.; Grishkewich, N.; Tam, K.C.; Yuan, J.; Mao, Z.; Sui, X. CO2-Responsive Cellulose Nanofibers Aerogels for Switchable Oil-Water Separation. ACS Appl. Mater. Interfaces 2019, 11, 9367–9373. [Google Scholar] [CrossRef]
- Durgadevi, N.; Swarnalatha, V. Polythiophene functionalized hydrophobic cellulose kitchen wipe sponge and cellulose fabric for effective oil-water separation. RSC Adv. 2017, 7, 34866–34874. [Google Scholar] [CrossRef] [Green Version]
- Chhajed, M.; Yadav, C.; Agrawal, A.K.; Maji, P.K. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Carbohydr. Polym. 2019, 226, 115286. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Kongparakul, S.; Samart, C.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr. Polym. 2018, 190, 184–189. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Z.; Ding, Y.; Xu, W.; Wu, W.; Zhu, Z.; Fong, H. Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds. Carbohydr. Polym. 2018, 179, 164–172. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, J.; Shi, Y.; Pei, C. Wettability-switchable bacterial cellulose/polyhemiaminal nanofiber aerogels for continuous and effective oil/water separation. Cellulose 2018, 25, 2987–2996. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Cudjoe, E.; Douglas, A.; Scheiman, D.; McCorkle, L.; Meador, M.A.B.; Rowan, S.J. Polyimide cellulose nanocrystal composite aerogels. Macromolecules 2016, 49, 1692–1703. [Google Scholar] [CrossRef] [Green Version]
- Seantier, B.; Bendahou, D.; Bendahou, A.; Grohens, Y.; Kaddami, H. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr. Polym. 2016, 138, 335–348. [Google Scholar] [CrossRef]
- Zou, Y.; Zhao, J.; Zhu, J.; Guo, X.; Chen, P.; Duan, G.; Liu, X.; Li, Y. A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624. [Google Scholar] [CrossRef] [PubMed]
- Hüsing, N.; Schubert, U. Aerogels—airy materials: Chemistry, structure, and properties. Angew. Chemie Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Gurav, J.L.; Jung, I.-K.; Park, H.-H.; Kang, E.S.; Nadargi, D.Y. Silica aerogel: Synthesis and applications. J. Nanomater. 2010, 2010, 409310. [Google Scholar] [CrossRef] [Green Version]
- Gesser, H.D.; Goswami, P.C. Aerogels and related porous materials. Chem. Rev. 1989, 89, 765–788. [Google Scholar] [CrossRef]
- Ishii, D.; Tatsumi, D.; Matsumoto, T.; Murata, K.; Hayashi, H.; Yoshitani, H. Investigation of the Structure of Cellulose in LiCl/DMAc Solution and Its Gelation Behavior by Small-Angle X-Ray Scattering Measurements. Macromol. Biosci. 2006, 6, 293–300. [Google Scholar] [CrossRef]
- Wang, Z.; Yokoyama, T.; Matsumoto, Y. Dissolution of ethylenediamine pretreated pulp with high lignin content in LiCl/DMSO without milling. J. Wood Chem. Technol. 2010, 30, 219–229. [Google Scholar] [CrossRef]
- Lin, R.; Li, A.; Zheng, T.; Lu, L.; Cao, Y. Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv. 2015, 5, 82027–82033. [Google Scholar] [CrossRef]
- Liao, Q.; Su, X.; Zhu, W.; Hua, W.; Qian, Z.; Liu, L.; Yao, J. Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv. 2016, 6, 63773–63781. [Google Scholar] [CrossRef]
- Li, Z.; Shao, L.; Hu, W.; Zheng, T.; Lu, L.; Cao, Y.; Chen, Y. Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr. Polym. 2018, 191, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Yang, Q.; Yang, F. Flexible Underwater Oleophobic Cellulose Aerogels for Efficient Oil/Water Separation. ACS Omega 2020, 5, 8181–8187. [Google Scholar] [CrossRef]
- Xiong, B.; Zhao, P.; Hu, K.; Zhang, L.; Cheng, G. Dissolution of cellulose in aqueous NaOH/urea solution: Role of urea. Cellulose 2014, 21, 1183–1192. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Dissolution of cellulose with ionic liquids and its application: A mini-review. Green Chem. 2006, 8, 325–327. [Google Scholar] [CrossRef]
- Jin, C.; Han, S.; Li, J.; Sun, Q. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr. Polym. 2015, 123, 150–156. [Google Scholar] [CrossRef]
- Fan, P.; Yuan, Y.; Ren, J.; Yuan, B.; He, Q.; Xia, G.; Chen, F.; Song, R. Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper. Carbohydr. Polym. 2017, 162, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, O.; Suopajärvi, T.; Österberg, M.; Liimatainen, H. Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl. Mater. Interfaces 2017, 9, 25029–25037. [Google Scholar] [CrossRef] [Green Version]
- Douglass, E.F.; Avci, H.; Boy, R.; Rojas, O.J.; Kotek, R. A review of cellulose and cellulose blends for preparation of bio-derived and conventional membranes, nanostructured thin films, and composites. Polym. Rev. 2018, 58, 102–163. [Google Scholar] [CrossRef]
- Liu, H.; Wang, A.; Xu, X.; Wang, M.; Shang, S.; Liu, S.; Song, J. Porous aerogels prepared by crosslinking of cellulose with 1,4-butanediol diglycidyl ether in NaOH/urea solution. RSC Adv. 2016, 6, 42854–42862. [Google Scholar] [CrossRef]
- Lu, J.; Xu, D.; Wei, J.; Yan, S.; Xiao, R. Superoleophilic and Flexible Thermoplastic Polymer Nanofiber Aerogels for Removal of Oils and Organic Solvents. ACS Appl. Mater. Interfaces 2017, 9, 25533–25541. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Cai, Z.; Gong, S. Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A 2014, 2, 3110–3118. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, J.; Zhang, Q.; Zhan, X.; Chen, F. A Shape Recovery Zwitterionic Bacterial Cellulose Aerogel with Superior Performances for Water Remediation. Langmuir 2019, 35, 11959–11967. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Xu, C.; Gao, M.; Zhu, M.; Jiang, L. Hierarchical Interface Engineering for Advanced Nanocellulosic Hybrid Aerogels with High Compressibility and Multifunctionality. Adv. Funct. Mater. 2021, 31, 2009349. [Google Scholar] [CrossRef]
- Gong, X.; Wang, Y.; Zeng, H.; Betti, M.; Chen, L. Highly Porous, Hydrophobic, and Compressible Cellulose Nanocrystals/Poly(vinyl alcohol) Aerogels as Recyclable Absorbents for Oil-Water Separation. ACS Sustain. Chem. Eng. 2019, 7, 11118–11128. [Google Scholar] [CrossRef]
- Yang, X.; Cranston, E.D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 2014, 26, 6016–6025. [Google Scholar] [CrossRef]
- Zhai, T.; Zheng, Q.; Cai, Z.; Xia, H.; Gong, S. Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr. Polym. 2016, 148, 300–308. [Google Scholar] [CrossRef]
- Dilamian, M.; Noroozi, B. Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr. Polym. 2021, 251, 117016. [Google Scholar] [CrossRef]
- Li, L.; Rong, L.; Xu, Z.; Wang, B.; Feng, X.; Mao, Z.; Xu, H.; Yuan, J.; Liu, S.; Sui, X. Cellulosic sponges with pH responsive wettability for efficient oil-water separation. Carbohydr. Polym. 2020, 237, 116133. [Google Scholar] [CrossRef]
- He, Z.; Zhang, X.; Batchelor, W. Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery. RSC Adv. 2016, 6, 21435–21438. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Zhang, L.; Zhong, Y.; Xu, H.; Mao, Z.; Wang, B.; Sui, X. Thiol-ene click reaction on cellulose sponge and its application for oil/water separation. RSC Adv. 2017, 7, 20147–20151. [Google Scholar] [CrossRef] [Green Version]
- Colson, J.; Amer, H.; Liebner, F.; Gindl-Altmutter, W. Oil-absorbing porous cellulosic material from sized wood pulp fines. Holzforschung 2019, 73, 83–92. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Shi, R.; Chen, L.; Fan, M. A robust salt-tolerant superoleophobic chitosan/nanofibrillated cellulose aerogel for highly efficient oil/water separation. Carbohydr. Polym. 2018, 200, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Mulyadi, A.; Zhang, Z.; Deng, Y. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels. ACS Appl. Mater. Interfaces 2016, 8, 2732–2740. [Google Scholar] [CrossRef]
- Li, J.; Zhai, S.; Wu, W.; Xu, Z. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents. Front. Chem. Sci. Eng. 2021, 1–11. [Google Scholar] [CrossRef]
- Sanguanwong, A.; Flood, A.E.; Ogawa, M.; Martín-Sampedro, R.; Darder, M.; Wicklein, B.; Aranda, P.; Ruiz-Hitzky, E. Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. J. Hazard. Mater. 2021, 417, 126068. [Google Scholar] [CrossRef]
- García-González, C.A.; Alnaief, M.; Smirnova, I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 2011, 86, 1425–1438. [Google Scholar] [CrossRef]
- Liebner, F.; Haimer, E.; Wendland, M.; Neouze, M.-A.; Schlufter, K.; Miethe, P.; Heinze, T.; Potthast, A.; Rosenau, T. Aerogels from unaltered bacterial cellulose: Application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol. Biosci. 2010, 10, 349–352. [Google Scholar] [CrossRef]
- Long, L.-Y.; Weng, Y.-X.; Wang, Y.-Z. Cellulose aerogels: Synthesis, applications, and prospects. Polymers 2018, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, Y.; Jiang, Z.; Wang, H. The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel. J. Wood Sci. 2015, 61, 595–601. [Google Scholar] [CrossRef]
- Yang, J.; Xia, Y.; Xu, P.; Chen, B. Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 2018, 25, 3533–3544. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Feng, J.; Le, N.T.; Le, A.T.T.; Hoang, N.; Tan, V.B.C.; Duong, H.M. Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 2013, 52, 18386–18391. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Feng, J.; Ng, S.K.; Wong, J.P.W.; Tan, V.B.C.; Duong, H.M. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2014, 445, 128–134. [Google Scholar] [CrossRef]
- Yang, X.; Ma, J.; Ling, J.; Li, N.; Wang, D.; Yue, F.; Xu, S. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl. Surf. Sci. 2018, 435, 609–616. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y. Lo Dual Wet and Dry Resilient Cellulose II Fibrous Aerogel for Hydrocarbon-Water Separation and Energy Storage Applications. ACS Omega 2018, 3, 3530–3539. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Y.; Dang, B.; Shen, X.; Jin, C.; Sun, Q.; Pei, J. Ultrafine Mn ferrite by anchoring in a cellulose framework for efficient toxic ions capture and fast water/oil separation. Carbohydr. Polym. 2018, 196, 117–125. [Google Scholar] [CrossRef]
- Feng, J.; Nguyen, S.T.; Fan, Z.; Duong, H.M. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem. Eng. J. 2015, 270, 168–175. [Google Scholar] [CrossRef]
- Cheng, H.; Gu, B.; Pennefather, M.P.; Nguyen, T.X.; Phan-Thien, N.; Duong, H.M. Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater. Des. 2017, 130, 452–458. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S. Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation. Sep. Purif. Technol. 2019, 221, 303–310. [Google Scholar] [CrossRef]
- Sanguanwong, A.; Pavasant, P.; Jarunglumlert, T.; Nakagawa, K.; Flood, A.; Prommuak, C. Hydrophobic cellulose aerogel from waste napkin paper for oil sorption applications. Nord. Pulp Pap. Res. J. 2020, 35, 137–147. [Google Scholar] [CrossRef]
- Thai, Q.B.; Nguyen, S.T.; Ho, D.K.; Du Tran, T.; Huynh, D.M.; Do, N.H.N.; Luu, T.P.; Le, P.K.; Le, D.K.; Phan-Thien, N.; et al. Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications. Carbohydr. Polym. 2020, 228, 115365. [Google Scholar] [CrossRef]
- Guan, H.; Cheng, Z.; Wang, X. Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents. ACS Nano 2018, 12, 10365–10373. [Google Scholar] [CrossRef]
- Wan, C.; Lu, Y.; Jiao, Y.; Cao, J.; Sun, Q.; Li, J. Cellulose aerogels from cellulose-NaOH/PEG solution and comparison with different cellulose contents. Mater. Sci. Technol. 2015, 31, 1096–1102. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Tan, Y.; Zhang, W.; Zhang, S.; Li, J. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem. Eng. J. 2019, 371, 769–780. [Google Scholar] [CrossRef]
- Zhao, L.; Li, L.; Wang, Y.; Wu, J.; Meng, G.; Liu, Z.; Guo, X. Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation. Appl. Phys. A Mater. Sci. Process. 2018, 124, 9. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.-L. Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A 2014, 2, 6337–6342. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Peng, X.; Zhong, L.; Tan, J.; Jing, S.; Cao, X.; Chen, W.; Liu, C.; Sun, R. An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J. Mater. Chem. A 2015, 3, 8772–8781. [Google Scholar] [CrossRef]
- Fan, B.; Yao, Q.; Wang, C.; Jin, C.; Wang, H.; Xiong, Y.; Li, S.; Sun, Q. Natural cellulose nanofiber extracted from cell wall of bamboo leaf and its derived multifunctional aerogel. Polym. Compos. 2018, 39, 3869–3876. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, P.; Wang, M.; Zhao, H.; Yang, J.; Xu, F. Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation. ACS Sustain. Chem. Eng. 2016, 4, 6409–6416. [Google Scholar] [CrossRef]
- Shang, Q.; Chen, J.; Hu, Y.; Yang, X.; Hu, L.; Liu, C.; Ren, X.; Zhou, Y. Facile Fabrication of Superhydrophobic Cross-Linked Nanocellulose Aerogels for Oil--Water Separation. Polymers 2021, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Wan, C.; Qiang, T.; Li, J. Synthesis of superhydrophobic ultralight aerogels from nanofibrillated cellulose isolated from natural reed for high-performance adsorbents. Appl. Phys. A Mater. Sci. Process. 2016, 122, 686. [Google Scholar] [CrossRef]
- Zhou, L.; Zhai, S.; Chen, Y.; Xu, Z. Anisotropic cellulose nanofibers/polyvinyl alcohol/graphene aerogels fabricated by directional freeze-drying as effective oil adsorbents. Polymers 2019, 11, 712. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Fu, Q.; Liu, H.; Gu, H.; Guo, Z. Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J. Colloid Interface Sci. 2021, 581, 299–306. [Google Scholar] [CrossRef]
- Zhang, Z.; Sèbe, G.; Rentsch, D.; Zimmermann, T.; Tingaut, P. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 2014, 26, 2659–2668. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y. Lo Cellulose nanofibril aerogels: Synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate. ACS Appl. Mater. Interfaces 2017, 9, 2825–2834. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhou, H.; Jiang, X.; Li, J.; Huang, F. Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol. 2017, 11, 929–934. [Google Scholar] [CrossRef]
- de Oliveira, P.B.; Godinho, M.; Zattera, A.J. Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste. Cellulose 2018, 25, 3105–3119. [Google Scholar] [CrossRef]
- Zanini, M.; Lavoratti, A.; Lazzari, L.K.; Galiotto, D.; Baldasso, C.; Zattera, A.J. Obtaining hydrophobic aerogels of unbleached cellulose nanofibers of the species eucalyptus sp. and pinus elliottii. J. Nanomater. 2018, 2018, 4646197. [Google Scholar] [CrossRef]
- Zanini, M.; Lavoratti, A.; Lazzari, L.K.; Galiotto, D.; Pagnocelli, M.; Baldasso, C.; Zattera, A.J. Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 2017, 24, 769–779. [Google Scholar] [CrossRef]
- Xiao, S.; Gao, R.; Lu, Y.; Li, J.; Sun, Q. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr. Polym. 2015, 119, 202–209. [Google Scholar] [CrossRef]
- Sai, H.; Fu, R.; Xing, L.; Xiang, J.; Li, Z.; Li, F.; Zhang, T. Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl. Mater. Interfaces 2015, 7, 7373–7381. [Google Scholar] [CrossRef]
- He, J.; Zhao, H.; Li, X.; Su, D.; Zhang, F.; Ji, H.; Liu, R. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard. Mater. 2018, 346, 199–207. [Google Scholar] [CrossRef]
- de Morais Zanata, D.; Battirola, L.C.; do Carmo Gonçalves, M. Chemically cross-linked aerogels based on cellulose nanocrystals and polysilsesquioxane. Cellulose 2018, 25, 7225–7238. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, M.; Lin, X.; Ren, X.; Huang, T.S.; Kim, I.S. Functional nanocomposite aerogels based on nanocrystalline cellulose for selective oil/water separation and antibacterial applications. Chem. Eng. J. 2019, 371, 306–313. [Google Scholar] [CrossRef]
- Sun, F.; Liu, W.; Dong, Z.; Deng, Y. Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem. Eng. J. 2017, 330, 774–782. [Google Scholar] [CrossRef]
- Wang, Y.; Uetani, K.; Liu, S.; Zhang, X.; Wang, Y.; Lu, P.; Wei, T.; Fan, Z.; Shen, J.; Yu, H.; et al. Multifunctional Bionanocomposite Foams with a Chitosan Matrix Reinforced by Nanofibrillated Cellulose. ChemNanoMat 2017, 3, 98–108. [Google Scholar] [CrossRef]
- Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Iqbal, H.M.N. Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation. TrAC Trends Anal. Chem. 2020, 127, 115902. [Google Scholar] [CrossRef]
- Mai, V.C.; Das, P.; Zhou, J.; Lim, T.T.; Duan, H. Mussel-Inspired Dual-Superlyophobic Biomass Membranes for Selective Oil/Water Separation. Adv. Mater. Interfaces 2020, 7, 1901756. [Google Scholar] [CrossRef]
- Hu, M.X.; Niu, H.M.; Chen, X.L.; Zhan, H.B. Natural cellulose microfiltration membranes for oil/water nanoemulsions separation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 564, 142–151. [Google Scholar] [CrossRef]
- Roy, S.; Zhai, L.; Van Hai, L.; Kim, J.W.; Park, J.H.; Kim, H.C.; Kim, J. One-step nanocellulose coating converts tissue paper into an efficient separation membrane. Cellulose 2018, 25, 4871–4886. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L. Superhydrophilic and underwater superoleophobic nanofibrous membrane for separation of oil/water emulsions. J. Mater. Res. 2020, 35, 1504–1513. [Google Scholar] [CrossRef]
- Wang, W.; Lin, J.; Cheng, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.S. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J. Hazard. Mater. 2020, 385, 121582. [Google Scholar] [CrossRef]
- Hou, D.; Wang, Z.; Wang, K.; Wang, J.; Lin, S. Composite membrane with electrospun multiscale-textured surface for robust oil-fouling resistance in membrane distillation. J. Membr. Sci. 2018, 546, 179–187. [Google Scholar] [CrossRef]
- Dizge, N.; Shaulsky, E.; Karanikola, V. Electrospun cellulose nanofibers for superhydrophobic and oleophobic membranes. J. Membr. Sci. 2019, 590, 117271. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Zhu, X.; Jiang, X.; Kong, X.Z. Easy preparation of superoleophobic membranes based on cellulose filter paper and their use for water–oil separation. Cellulose 2019, 26, 6813–6823. [Google Scholar] [CrossRef]
- Xu, D.; Gong, M.; Li, S.; Zhu, X.; Kong, X.Z. Fabrication of superhydrophobic/oleophilic membranes by chemical modification of cellulose filter paper and their application trial for oil–water separation. Cellulose 2020, 27, 6093–6101. [Google Scholar] [CrossRef]
- Kollarigowda, R.H.; Abraham, S.; Montemagno, C.D. Antifouling cellulose hybrid biomembrane for effective oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 29812–29819. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, H.; Yuan, X.; Ding, W.; Li, Y.; Wang, J. Separation of oil-water emulsion and adsorption of Cu(II) on a chitosan-cellulose acetate-TiO2 based membrane. Chemosphere 2019, 235, 239–247. [Google Scholar] [CrossRef]
- Babiker, D.M.D.; Zhu, L.; Yagoub, H.; Xu, X.; Zhang, X.; Shibraen, M.H.M.A.; Yang, S. Hydrogen-bonded methylcellulose/poly(acrylic acid) complex membrane for oil-water separation. Surf. Coat. Technol. 2019, 367, 49–57. [Google Scholar] [CrossRef]
- Yang, J.; Xie, A.; Cui, J.; Chen, Y.; Lang, J.; Li, C.; Yan, Y.; Dai, J. An acid–alkali–salt resistant cellulose membrane by rapidly depositing polydopamine and assembling BaSO4 nanosheets for oil/water separation. Cellulose 2020, 27, 5169–5178. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; Guo, J.; Chen, T.; Liu, H. Superhydrophobic polypyrrole-coated cigarette filters for effective oil/water separation. Appl. Sci. 2020, 10, 1985. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Gao, R.; Wu, T.; Li, Y. Role of layered materials in emulsified oil/water separation and anti-fouling performance of modified cellulose acetate membranes with hierarchical structure. J. Membr. Sci. 2017, 543, 163–171. [Google Scholar] [CrossRef]
- Cheng, M.; He, H.; Zhu, H.; Guo, W.; Chen, W.; Xue, F.; Zhou, S.; Chen, X.; Wang, S. Preparation and properties of pH-responsive reversible-wettability biomass cellulose-based material for controllable oil/water separation. Carbohydr. Polym. 2019, 203, 246–255. [Google Scholar] [CrossRef]
- Chen, W.; Su, Y.; Zheng, L.; Wang, L.; Jiang, Z. The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes. J. Membr. Sci. 2009, 337, 98–105. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Macni, C.R.M.; Caparanga, A.R.; Huang, S.H.; Tsai, H.A.; Lee, K.R.; Lai, J.Y. Mitigating the fouling of mixed-matrix cellulose acetate membranes for oil–water separation through modification with polydopamine particles. Chem. Eng. Res. Des. 2020, 159, 195–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, L.; Wang, Q.; Qiang, R.; Gao, Y.; Ma, S.; Cheng, Q.; Zhang, Y. Polyrotaxane crosslinked modified EC/PVDF composite membrane displaying simultaneously enhanced pervaporation performance and solvent resistance for benzene/cyclohexane separation. J. Mater. Sci. 2020, 55, 8403–8419. [Google Scholar] [CrossRef]
- Xu, X.; Long, Y.; Li, Q.; Li, D.; Mao, D.; Chen, X.; Chen, Y. Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment. J. Clean. Prod. 2019, 211, 1463–1470. [Google Scholar] [CrossRef]
- Ao, C.; Yuan, W.; Zhao, J.; He, X.; Zhang, X.; Li, Q.; Xia, T.; Zhang, W.; Lu, C. Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohydr. Polym. 2017, 175, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.P.C.; Oliveira, J.; Fernandes, S.N.; Godinho, M.H.; Canejo, J.P. All-cellulose composite membranes for oil microdroplet collection. Cellulose 2020, 27, 4665–4677. [Google Scholar] [CrossRef]
- Yagoub, H.; Zhu, L.; Shibraen, M.H.M.A.; Altam, A.A.; Babiker, D.M.D.; Rehan, K.; Mukwaya, V.; Xu, J.; Yang, S. Manipulating the surface wettability of polysaccharide based complex membrane for oil/water separation. Carbohydr. Polym. 2019, 225, 115231. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Ye, D.; Chang, C.; Zhang, L. Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. J. Membr. Sci. 2017, 525, 1–8. [Google Scholar] [CrossRef]
- Sobolčiak, P.; Tanvir, A.; Popelka, A.; Moffat, J.; Mahmoud, K.A.; Krupa, I. The preparation, properties and applications of electrospun co-polyamide 6,12 membranes modified by cellulose nanocrystals. Mater. Des. 2017, 132, 314–323. [Google Scholar] [CrossRef]
- Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 2011, 12, 970–976. [Google Scholar] [CrossRef]
- Ma, H.; Yoon, K.; Rong, L.; Mao, Y.; Mo, Z.; Fang, D.; Hollander, Z.; Gaiteri, J.; Hsiao, B.S.; Chu, B. High-flux thin-film nanofibrous composite ultrafiltration membranes containing cellulose barrier layer. J. Mater. Chem. 2010, 20, 4692–4704. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Fan, Y.; Shi, H.; Wang, Y.; Ma, J.; Li, H. Novel dual superlyophobic cellulose membrane for multiple oil/water separation. Chemosphere 2020, 241, 125067. [Google Scholar] [CrossRef]
- Shang, Y.; Si, Y.; Raza, A.; Yang, L.; Mao, X.; Ding, B.; Yu, J. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale 2012, 4, 7847–7854. [Google Scholar] [CrossRef]
- Chen, W.; Su, Y.; Zhang, L.; Shi, Q.; Peng, J.; Jiang, Z. In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. J. Membr. Sci. 2010, 348, 75–83. [Google Scholar] [CrossRef]
- Cheng, Q.Y.; Zhao, X.L.; Li, Y.D.; Weng, Y.X.; Zeng, J.B. Robust and nanoparticle-free superhydrophobic cotton fabric fabricated from all biological resources for oil/water separation. Int. J. Biol. Macromol. 2019, 140, 1175–1182. [Google Scholar] [CrossRef]
- Cheng, Q.Y.; Guan, C.S.; Wang, M.; Li, Y.D.; Zeng, J.B. Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation. Carbohydr. Polym. 2018, 199, 390–396. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Z.; Huang, W.; Zhang, S.; Huang, J.; Yang, H.; Zhou, Y.; Xu, W.; Gu, S. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric. Appl. Surf. Sci. 2020, 503, 144079. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Hydrophobic and flame-retardant finishing of cotton fabrics for water–oil separation. Cellulose 2020, 27, 4145–4159. [Google Scholar] [CrossRef]
- Zhu, T.; Li, S.; Huang, J.; Mihailiasa, M.; Lai, Y. Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation. Mater. Des. 2017, 134, 342–351. [Google Scholar] [CrossRef]
- He, Y.; Wan, M.; Wang, Z.; Zhang, X.; Zhao, Y.; Sun, L. Fabrication and Characterization of Degradable and Durable Fluoride-Free Super-Hydrophobic Cotton Fabrics for Oil/Water Separation. Surf. Coat. Technol. 2019, 378, 125079. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Zhang, C.; Cai, P.; Bai, N.; Xu, X. Intelligent self-healing superhydrophobic modification of cotton fabrics via surface-initiated ARGET ATRP of styrene. Chem. Eng. J. 2017, 323, 134–142. [Google Scholar] [CrossRef]
- Cao, C.; Wang, F.; Lu, M. Superhydrophobic CuO coating fabricated on cotton fabric for oil/water separation and photocatalytic degradation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 125033. [Google Scholar] [CrossRef]
- Song, Q.; Wang, H.; Han, S.; Wang, J.; Zhang, B.; Zhang, Y. Halloysite nanotubes functionalized cotton fabric for oil/water separation. Prog. Org. Coat. 2020, 148, 105839. [Google Scholar] [CrossRef]
- Hou, K.; Zeng, Y.; Zhou, C.; Chen, J.; Wen, X.; Xu, S.; Cheng, J.; Pi, P. Facile generation of robust POSS-based superhydrophobic fabrics via thiol-ene click chemistry. Chem. Eng. J. 2018, 332, 150–159. [Google Scholar] [CrossRef]
- Deng, Y.; Han, D.; Deng, Y.Y.; Zhang, Q.; Chen, F.; Fu, Q. Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation. Chem. Eng. J. 2020, 379, 122391. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Chen, J.T.; Hao, B.; Wang, R.; Ma, P.C. Preparation of cellulose-coated cotton fabric and its application for the separation of emulsified oil in water. Carbohydr. Polym. 2020, 240, 116318. [Google Scholar] [CrossRef]
- Zhao, W.; Xiao, X.; Pan, G.; Ye, Z. Fabrication of Cu species functionalized cotton fabric with oil/water separating reusability by in-situ reduction process. Surf. Coat. Technol. 2020, 385, 125405. [Google Scholar] [CrossRef]
- Mai, Z.; Shu, X.; Li, G.; Chen, D.; Liu, M.; Xu, W.; Zhang, H. One-step fabrication of flexible, durable and fluorine-free superhydrophobic cotton fabrics for efficient oil/water separation. Cellulose 2019, 26, 6349–6363. [Google Scholar] [CrossRef]
- Yang, J.; Pu, Y.; He, H.; Cao, R.; Miao, D.; Ning, X. Superhydrophobic cotton nonwoven fabrics through atmospheric plasma treatment for applications in self-cleaning and oil–water separation. Cellulose 2019, 26, 7507–7522. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, Y.; Jiang, G.; Wang, R.; Wang, X.; Hu, R.; Xi, X. Transformation of hydrophilic cotton fabrics into superhydrophobic surfaces for oil/water separation. J. Text. Inst. 2013, 104, 305–311. [Google Scholar] [CrossRef]
- Chen, J.; Shen, C.; Yang, S.; Rana, M.; Ma, P.C. Acid and temperature dual-responsive cotton fabrics with polymer coating. Compos. Commun. 2017, 4, 10–15. [Google Scholar] [CrossRef]
- Ao, C.; Hu, R.; Zhao, J.; Zhang, X.; Li, Q.; Xia, T.; Zhang, W.; Lu, C. Reusable, salt-tolerant and superhydrophilic cellulose hydrogel-coated mesh for e ffi cient gravity-driven oil/water separation. Chem. Eng. J. 2018, 338, 271–277. [Google Scholar] [CrossRef]
- Lu, F.; Chen, Y.; Liu, N.; Cao, Y.; Xu, L.; Wei, Y.; Feng, L. A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil–water separation. RSC Adv. 2014, 4, 32544–32548. [Google Scholar] [CrossRef]
- Xie, X.; Liu, L.; Zhang, L.; Lu, A. Strong cellulose hydrogel as underwater superoleophobic coating for e ffi cient oil/water separation. Carbohydr. Polym. 2020, 229, 115467–115475. [Google Scholar] [CrossRef]
- Huang, J.; Wang, S.; Lyu, S.; Fu, F. Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying. Ind. Crop. Prod. 2018, 122, 438–447. [Google Scholar] [CrossRef]
- Wu, M.B.; Zhang, C.; Pi, J.K.; Liu, C.; Yang, J.; Xu, Z.K. Cellulose nanocrystals as anti-oil nanomaterials for separating crude oil from aqueous emulsions and mixtures. J. Mater. Chem. A 2019, 7, 7033–7041. [Google Scholar] [CrossRef]
- Mahbubul Bashar, M.; Zhu, H.; Yamamoto, S.; Mitsuishi, M. Superhydrophobic surfaces with fluorinated cellulose nanofiber assemblies for oil–water separation. RSC Adv. 2017, 7, 37168–37174. [Google Scholar] [CrossRef] [Green Version]
- Paul, U.C.; Fragouli, D.; Bayer, I.S.; Athanassiou, A. Functionalized Cellulose Networks for Efficient Oil Removal from Oil—Water Emulsions. Polymers 2016, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, Y.; Gao, Y. 3D printed cellulose-based high-efficiency oil-water separation mesh. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; pp. 022088–022096. [Google Scholar]
- Koh, J.J.; Hao, G.L.J.; Zhou, X.; Zhang, X.; Ding, J.; He, C. 3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications. ACS Appl. Mater. Interfaces 2019, 11, 13787–13795. [Google Scholar] [CrossRef]
- Zhao, P.; Qin, N.; Ren, C.L.; Wen, J.Z. Surface modification of polyamide meshes and nonwoven fabrics by plasma etching and a PDA/cellulose coating for oil/water separation. Appl. Surf. Sci. 2019, 481, 883–891. [Google Scholar] [CrossRef]
- Karki, H.P.; Kafle, L.; Ojha, D.P.; Song, J.H.; Kim, H.J. Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition. Sep. Purif. Technol. 2019, 210, 913–919. [Google Scholar] [CrossRef]
- Ma, W.; Guo, Z.; Zhao, J.; Yu, Q.; Wang, F.; Han, J.; Pan, H.; Yao, J.; Zhang, Q.; Samal, S.K.; et al. Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Sep. Purif. Technol. 2017, 177, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Shoba, B.; Jeyanthi, J.; Vairam, S. Synthesis, Characterization of Cellulose Acetate Membrane and Application for the Treatment of Oily Wastewater. Environ. Technol. 2020, 41, 1590–1605. [Google Scholar] [CrossRef] [PubMed]
- Mansourizadeh, A.; Javadi Azad, A. Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil-water separation. J. Polym. Res. 2014, 21, 375. [Google Scholar] [CrossRef]
- Halim, A.; Xu, Y.; Lin, K.H.; Kobayashi, M.; Kajiyama, M.; Enomae, T. Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane. Sep. Purif. Technol. 2019, 224, 322–331. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, C.; Hu, H.; Liu, Y.; Fei, B.; Xin, J.H. Temperature-responsive nanofibers for controllable oil/water separation. RSC Adv. 2015, 5, 51078–51085. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, Q.G.; Li, H.M.; Guo, N.N.; Zhu, A.M.; Liu, Q.L. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions. Nanoscale 2014, 6, 10363–10369. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, P.; Fu, X.; Chung, T.S. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Res. 2014, 52, 112–121. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Li, Z.; Zhu, Y.; Yu, H. Oil removal from oily water by a low-cost and durable flexible membrane made of layered double hydroxide nanosheet on cellulose support. J. Clean. Prod. 2018, 180, 307–315. [Google Scholar] [CrossRef]
- Yue, X.; Li, J.; Zhang, T.; Qiu, F.; Yang, D.; Xue, M. In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation. Chem. Eng. J. 2017, 328, 117–123. [Google Scholar] [CrossRef]
- Reis, A.M.S.; Vieira, A.T.; Santos, A.L.R.; Ferreira, M.V.; Batista, A.C.F.; Assunção, R.M.N.; Filho, G.R.; Ribeiro, E.A.M.; Faria, A.M. Regenerated Cellulose Membrane from Peanut Shell for Biodiesel Purification. J. Braz. Chem. Soc. 2020, 31, 1011–1020. [Google Scholar] [CrossRef]
- Wang, M.; Peng, M.; Zhu, J.; Li, Y.D.; Zeng, J.B. Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation. Carbohydr. Polym. 2020, 244, 116449. [Google Scholar] [CrossRef]
- Wang, B.; Lei, B.; Tang, Y.; Xiang, D.; Li, H.; Ma, Q.; Zhao, C.; Li, Y. Facile fabrication of robust superhydrophobic cotton fabrics modified by polysiloxane nanowires for oil/water separation. J. Coat. Technol. Res. 2018, 15, 611–621. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Q.; Yin, X.; Xu, J.; Cai, Y.; Han, L.; Huang, H.; Zhou, Y.; Tan, Y.; Wang, L.; et al. Fabrication of superhydrophobic and superoleophilic polybenzoxazine-based cotton fabric for oil–water separation. Cellulose 2018, 25, 6691–6704. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Z.; Yang, H.; Hou, K.; Zeng, X.; Zheng, Y.; Cheng, J. Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation. ACS Appl. Mater. Interfaces 2017, 9, 9184–9194. [Google Scholar] [CrossRef]
- Cheng, Q.Y.; An, X.P.; Li, Y.D.; Huang, C.L.; Zeng, J.B. Sustainable and Biodegradable Superhydrophobic Coating from Epoxidized Soybean Oil and ZnO Nanoparticles on Cellulosic Substrates for Efficient Oil/Water Separation. ACS Sustain. Chem. Eng. 2017, 5, 11440–11450. [Google Scholar] [CrossRef]
- Fan, T.; Qian, Q.; Hou, Z.; Liu, Y.; Lu, M. Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method. Carbohydr. Polym. 2018, 200, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Chen, X.; Zhang, T.; Yu, J.; Jiang, X.; Hu, W.; Jiao, F. A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation. Chem. Eng. J. 2018, 347, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Guo, Z. A facile method to mussel-inspired superhydrophobic thiol-textiles@polydopamine for oil/water separation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 253–260. [Google Scholar] [CrossRef]
Matrix Material * | Hydrophobic Modification | SBET [m2 g−1] | δ [mg cm−3] | WCA [°] | Oil Removal Rate [cm3 g−1] | Recovery Method **/Cycles/Capacity after | Ref. |
---|---|---|---|---|---|---|---|
Cellulose | |||||||
(CA) + graphene | HDTMS | 33 | 18.4 | 159.0 | 415.1 ± 38.8 | M/10/95% | [58] |
C. (electrospun) | MTCS | 7.9 | 1 | 174.1 ± 9.5 | M/10/80% | [134] | |
(CA) + graphene | PVOH | 6.45 | 141.2 | 147.2 ± 10.9 | M/10/80% | [89] | |
GO | DDTES | 47.3 | 5.9 | 150.0 | 133.2 ± 17.2 | M,D/10/90%, 100% | [62] |
(bamboo) + MnFe2O4-NP | NR | 182 | NR | 153.0 | 119.8 ± 5.3 | M/10/70.5% | [135] |
(paper waste) | Kymene/MTMS | NR | 7 | 153.5 | 108.0 | NR | [136] |
(sisal) + Cu-NP | NR | NR | 4.56–11.23 | 150.3 | 107.4 ± 0.4 | D/10/85% | [76] |
(CA butyrate) + EVOH + GA | NR | NR | 12.3 | 145.0 | 67.1 ± 6.8 | D,M/10, 15/100% | [110] |
(wood fines) + PMMA | Alkyl-ketene dimer | NR | 13–127 | 135.0 | 64.8 | NR | [121] |
(cotton, paper waste) | MTMS | NR | 5.13–8.5 | 142.8 | 61.1 | D, M/5 | [137] |
(CAA) + CNF + APTES | alkylamines | NR | 146.0 | 59.8 ± 4.0 | -/10/85, 90% | [118] | |
(ethylcellulose EC) + oleic-acid coated Fe3O4 –NP | HDTMS | NR | <18 | 152.8 | 54.3 ± 3.1 | D/50/88% | [56] |
(Corn stalk pits) | ODA | 2.7 | NR | 157.2 | 49.8 ± 6.1 | E/20/80% | [84] |
(cotton) + (MBA) | MTCS | NR | 31 | 141.0 | 48.2 ± 12.9 | M/10/70% | [100] |
(EC) + ECH/Si-CNT/nanosilica | HDTMS | NR | <20 | 158.2 | 44.5 ± 1.9 | D/50/86% | [57] |
(paper waste)/GA | TMCS | 405 | 28.7 | 135.0 | 32.1 ± 2.5 | NR | [106] |
(hardwood)/BDE | ESBO | NR | 73 | 132.6 | 32.1 ± 0.2 | M/30/90% | [82] |
(reg. MCC) + Fe2O3-NP | TiO2 (sol-gel) | NR | NR | NR | 31.8 | E | [74] |
(cotton) | MTMS | NR | NR | 154.0 | 29.2 ± 1.0 | 18/90.6% | [138] |
(waste paper) | MTMS | NR | 27.2 | 146.1 | 28.4 | M/10/60% | [139] |
(sugarcane bagasse) | MTMS | NR | 16–112 | 150.5 | 28.4 ± 2.5 | NR | [140] |
(cotton) | MTCS | NR | 19.6 | 150.0 | 28.1 ± 1.2 | D/15/100% | [99] |
(balsa wood) | MTMS | 23.4 | 30 | 151.0 | 26.7 ± 1.4 | M/10/94% | [141] |
(bamboo, cotton) | ODTMS | NR | 34 | 156.0 | 25.8 ± 3.0 | E/30/ | [59] |
(C. diacetate) + PMDA | OTCS | 3.4 | 4.3 | 120.0 | 24.2 ± 7.1 | M/10/40% | [61] |
(wheat straw) | TMCS | 36–143 | 44–150 | 136.0 | 21.8 | NR | [142] |
NR | MTMS | NR | 40 | 145.0 | 20.5 | M/5 | [131] |
(paper waste) | MTMS | NR | 40 | 135.3 | 20.5 | M | [132] |
+butanediol diglycidyl ether crosslinked (BDE) | NR | NR | 14–24 | NR | 18.5 | M/30/18% | [109] |
(balsa wood) | PDMS | NR | 74.8 | 150.0 | 13.8 ± 0.5 | M/18 | [143] |
+chitosan | TMCS | NR | 53 | 152.8 | 12.7 ± 9.0 | M/50/83% | [101] |
(foam) + PE, PP, graphite | SA/graphite | NR | NR | 145.0 | 11.3 ± 1.8 | M/15/40–60% | [71] |
(paper waste) | MTCS | NR | 29 | 136.0 | 10.7 | M/5 | [105] |
+chitosan | sodium stearate | NR | 65 | 156.0 | 10.7 | E/5 | [80] |
(cotton) | DMAEMA | NR | NR | 130.0 | 9.8 ± 2.4 | -/5 | [144] |
(MCC) | CTAC | NR | NR | 167.5 | 9.5 ± 0.9 | M/20 | [78] |
(natural sponge) | polythiophene | NR | NR | 126.6 | 6.8 ± 0.3 | -/5/70% | [86] |
CNF/MFC | |||||||
(Rice Straw) | OTES | 10.9 | 1.7–1.8 | NR | 274.6 ± 18.8 | D/6/48% | [145] |
MOF | MTMS | NR | 9 | 150 | 209 ± 49 | M/25/86% | [124] |
NR | MTMS | NR | 2.4 | 154.0 | 208.2 ± 14.6 | M/30/100% | [146] |
(bamboo leaf) | MTMS | NR | NR | 152.0 | 205.1 | NR | [147] |
(cotton) + nanochitosan | reduced GO | 110 | 9.3 | 115.3 | 186.1 ± 17.2 | M/10/92% | [70] |
(cotton) | SDS | 151 | 1.5 | NR | 165.0 | NR | [79] |
(soft wood Kraft pulp) | MTES | 94.8–195.5 | 3.41–5.08 | 151.8 | 164.0 ± 29.3 | E/30/65% | [148] |
(kapok) | VTMS | NR | 5.1 | 140.1 | 149 | E/10/87% | [64] |
(rice straw) + (PAE) | MTMS | 178.8 | 2.2 | 151 | 135.7 ± 19.7 | M/5/45% | [117] |
BTCA | HTMS | NR | 6 | 151 | 134 ± 15 | E/30/78% | [149] |
clay sepiolite | MTMS | NR | 6 | 128 | 126.8 ± 33.5 | M | [125] |
NR | PDA/ODA | 93.1 | 6.04 | 152.5 | 121.6 ± 3.7 | M/1/50% | [83] |
+PVOH, BTCA | MTCS | 35.1–106.1 | 4.66–16.54 | 114.5 ± 12.1 | NR | [116] | |
(reed) | MTCS | 55.2 | 4.9 | 155.0 | 113.6 | M/5/80% | [150] |
(recycled waste fibers) | MTMS/HDTMS | NR | 2.9 | 150.0 | 106.9 ± 7.3 | M/30/71–81% | [107] |
(bamboo) | MTCS | NR | 17.95 | 142.0 | 90.9 | NR | [151] |
HDTMS | >261.9 | 11–17.5 | 138.9 | 89.8 | M/20 | [55] | |
CNF + Al2O3-NP | NR | 124 | 5.1 | NR | 84.3 ± 15.5 | NR | [152] |
(oat straw pulp powder) | MTMS | 25 | 17.3 | 136.0 | 69.9 ± 2.8 | E/10 | [153] |
(mango wood) | Stearoyl chloride | 156 | 7–20 | 159.0 | 67.5 ± 2.2 | M/15/75% | [87] |
(eucalyptus) + PVOH, GA | MTCS | 172 | 13 | 150.0 | 64.4 ± 3.3 | NR | [111] |
MDI | 228 | 6.9, 8.3 | NR | 63.6 | E/5 | [154] | |
(carboxymethylated) | OTCS | 11–42 | 4–14 | 150.0 | 58.4 | NR | [60] |
+GO, silica | PFDTES | 29.5–93.5 | 10–40 | 155.5 | 58.4 ± 8.1 | D/10/100% | [66] |
stearoyl chloride | NR | NR | 160.0 | 45.2 ± 3.9 | M/10/56% | [88] | |
(bamboo) | TMCS | 6.78 | 117.0 | 38.6 | NR | [155] | |
+Fe3O4 | oleic acid | 397 | 9.2 | 84.5 | 37.8 | NR | [81] |
(recycled waste fibers) + SBA, EDMA | Kymene | 18.4 | 23 | 149.0 | 34.1 ± 2.1 | D/5/40% | [123] |
TiO2 (ALD) | 20–30 | 90.0 | 30.2 ± 2.1 | D/10/100% | [73] | ||
(furniture waste) | MTMS | 3.8 | 46 | 138.8 | 25.1 | NR | [156] |
MTCS | NR | NR | 148.7 | 24.0 ± 2.1 | M/10/92.4% | [130] | |
(eucalyptus, pinus) | MTMS | NR | 30 | 134.0 | 23.9 | NR | [157] |
(pulp waste) | MTMS | NR | NR | 133.5 | 19.1 | NR | [158] |
(eukalyptus) | carbonization | NR | 112 | 130 | 7.4 ± 0.8 | D/100/95% | [68] |
(pine needles) | MTCS | 20.1 | 3.12 | 135.0 | NR | [159] | |
BNC | |||||||
carbon | 449 | 3.3 | 141.0 | 369.4 ± 57.7 | M/10/94.6% | [67] | |
+GO | graphene | NR | NR | NR | 192.6 | NR | [69] |
MTMS/PMSQ | NR | 0.7 | 168 | 148.8 ± 13.0 | M/10/90% | [113] | |
TMCS | 180.7 | 6.77 | 146.5 | 129.7 ± 7.2 | M, E/10 | [160] | |
CNT | NR | 3.9–10.8 | 123.3 | 108.0 | NR | [72] | |
PHA | 46.5 | 30.9 | 143.0 | 70.5 | E/3 | [90] | |
+silica | MTES | NR | 63 | 152.0 | 13.5 ± 1.9 | M | [161] |
CNC | |||||||
+hydrazine | NR | 250 | 5.6 | 96.0 | M/20/80% | [115] | |
+PVOH, ECH | MTCS | 38 | 22.5–36.1 | 114.9 | 30.4 ± 7.1 | M, E/10/90% | [114] |
+polysilsesquioxane | IPTES | 23–90 | 0.11–0.17 | 9.2 | NR | [162] | |
CPTES | 86 | NR | E/10 | [163] |
Matrix Material * | Hydrophobic Modification | SBET [m2 g−1] | δ [mg cm−3] | WCA [°] | Flux [L m−2 h−1] | Separation Efficiency [%] | Recovery Method **/Cycles/Capacity after | Ref. |
---|---|---|---|---|---|---|---|---|
Cellulose | ||||||||
+SiO2-NP, TiO2-NP | APTMS | 230 | 135 | 138.5 | 667 | 99.99 | NR | [133] |
(EC) + ECH + Ag-NP | N-dodecyl mercaptan | 17 | 161.3 | NR | 99.76 | D/50/90% | [77] | |
TiO2 (sol-gel)/OTMS | NR | 171.0 | NR | 98.50 | E/40/93% | [75] | ||
+Fe3O4-NP | HDTMS | NR | 156.0 | 120 | 98.00 | E/5 | [54] | |
(filter paper) | PFOTES | 146.0 | M/30 | [65] | ||||
CNF | ||||||||
+GPTMS + PEI | PDMAEMA | 12.72 | 57 | 130.0 | 4200 | 99.96 | NR | [85] |
CNF + SiO2-NP | MTMS | 108.6 | <6.43 | 168.4 | 2000 | 99.50 | E/20/100% | [63] |
BNC + GA + Ag-NP | silane-based zwitterionic compound | 13 | 153.0 | NR | 99.22 | -/10 | [112] |
Matrix Material * | Hydrophobic Modification | SBET [m2 g−1] | δ [mg cm−3] | UWCA [°] | Flux [L m−2 h−1] | Separation Efficiency [%] | Recovery Method **/Cycles/Capacity after | Ref. |
---|---|---|---|---|---|---|---|---|
Cellulose | ||||||||
(cotton) + MBA + GO | GO | 10 | NR | 22,900 | 99.80 | M/10/99% | [102] | |
(CA) + graphene | polydopamine/PEI | 33 | 18.4 | 143.5 | NR | NR | M/10/95% | [58] |
CNF/MFC | ||||||||
mercaptopropionic acid | NR | 147 | NR | 100.00 | E/10/95–100% | [120] | ||
sulfonation | 52.24 | 160 | 360 | 99.97 | E/20/100% | [164] | ||
+chitosan | NR | 18.6 | 160 | NR | 99.00 | -/40/98.6% | [122] | |
+PAE | NR | NR | 155.6 | 2405 | 98.60 | -/10/100% | [119] | |
+chitosan | NR | 6.1 | 143 | NR | NR | -/16 | [165] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fürtauer, S.; Hassan, M.; Elsherbiny, A.; Gabal, S.A.; Mehanny, S.; Abushammala, H. Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers 2021, 13, 2739. https://doi.org/10.3390/polym13162739
Fürtauer S, Hassan M, Elsherbiny A, Gabal SA, Mehanny S, Abushammala H. Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers. 2021; 13(16):2739. https://doi.org/10.3390/polym13162739
Chicago/Turabian StyleFürtauer, Siegfried, Mostafa Hassan, Ahmed Elsherbiny, Shaimaa A. Gabal, Sherif Mehanny, and Hatem Abushammala. 2021. "Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup" Polymers 13, no. 16: 2739. https://doi.org/10.3390/polym13162739
APA StyleFürtauer, S., Hassan, M., Elsherbiny, A., Gabal, S. A., Mehanny, S., & Abushammala, H. (2021). Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers, 13(16), 2739. https://doi.org/10.3390/polym13162739