Hybrid Hosts Based on Sodium Alginate and Porous Clay Heterostructures for Drug Encapsulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PCHs
2.3. Synthesis of Hybrid Beads
2.4. Characterization Techniques
3. Results
3.1. Characterization of Hybrid Beads
3.1.1. FTIR Analysis
3.1.2. TGA Tests
3.1.3. SEM Characterization
3.1.4. Determination of the Encapsulation Efficiency and Drug Release Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taleuzzaman, M.; Gupta, D.K.; Kala, C.; Gilani, S.J.; Beg, S. Chapter 12—Nanotechnology-assisted medical devices in cancer treatment. In Nanoformulation Strategies for Cancer Treatment; Micro and Nano Technology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 195–205. [Google Scholar] [CrossRef]
- Solhjoo, A.; Sobhani, Z.; Sufali, Z.; Rezaei, Z.; Khabnadiedeh, S.; Sakhteman, A. Exploring pH dependent delivery of 5-fluorouracil from functionalized multi-walled carbon nanotube. Colloids Surf. B Biointerfaces 2021, 205, 111823. [Google Scholar] [CrossRef]
- Zeng, Y.; Xiang, Y.; Sheng, R.; Tomas, H.; Rodrigues, J.; Gu, Z.; Zang, H.; Gong, Q.; Luo, K. Polysaccharide-based nanomedicine for cancer immunotherapy: A review. Bioact. Mater. 2021, 6, 3358–3382. [Google Scholar] [CrossRef]
- Lu, L.; Sun, Y.; Wan, C.; Hu, Y.; Lo, P.-C.; Lovell, J.F.; Yang, K.; Jin, H. Role of intravital imaging in nanomedicine assisted anti-cancer therapy. Curr. Opin. Biotech. 2021, 69, 153–161. [Google Scholar] [CrossRef]
- Nagarwal, R.C.; Kumar, R.; Pandit, J.K. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: In Vitro characterization and In Vivo study in rabbit eye. Eur. J. Pharm. Sci. 2012, 47, 678–685. [Google Scholar] [CrossRef]
- Azhar, F.; Olad, F.; Olad, A. A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate-chitosan/montmorillonite nanocomposite systems. Appl. Clay Sci. 2014, 101, 288–296. [Google Scholar] [CrossRef]
- Arias, J.L. Nouvel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 2008, 13, 2340–2369. [Google Scholar] [CrossRef] [Green Version]
- Puga, A.M.; Limab, A.C.; Manob, J.F.; Concheiroa, A.; Alvarez-Lorenzoa, C. Pectin-coated chitosan microgels crosslinked on superhydrophobic surface for 5-fluorouracil encapsulation. Carbohydr. Polym. 2013, 98, 331–340. [Google Scholar] [CrossRef]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019, 561, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Leite de Farias, A.; Meneguin, A.B.; da Silva Barud, H.; Brighenti, F.L. The role of sodium alginate and gellan gum in the design of new drug delivery systems intended for antibiofilm activity of morin. Int. J. Biol. Macromol. 2020, 162, 1944–1958. [Google Scholar] [CrossRef] [PubMed]
- Prasher, P.; Sharma, M.; Mehta, M.; Satija, S.; Aljabali, A.A.; Tambuwala, M.M.; Anand, K.; Sharma, N.; Dureja, H.; Jha, N.K.; et al. Current-status and applications of polysaccharides in drug delivery systems. Colloid Interf. Sci. Commun. 2021, 42, 1000418. [Google Scholar] [CrossRef]
- Sood, A.; Gupta, A.; Agrawal, G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carboh. Polymer Tech. Appl. 2021, 2, 1000067. [Google Scholar] [CrossRef]
- Alipour, S.; Mantaseri, H.; Tafaghodi, M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf. B Biointerf. 2010, 81, 521–529. [Google Scholar] [CrossRef]
- Fabra, M.J.; Talens, P.; Chiralt, A. Effect of alginate and λ-carrageenan on tensile properties and water vapour permeability of sodium caseinate-lipid based films. Carbohydr. Polym. 2008, 74, 419–426. [Google Scholar] [CrossRef]
- Shen, W.; Hsieh, Y.L. Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking. Carbohydr. Polym. 2014, 102, 893–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshar, M.; Dini, G.; Vaezifar, S.; Mehdikhani, M.; Movahedi, B. Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanoparticles as a drug delivery system. J. Drug Deliv. Sci. Technol. 2020, 56, 101530. [Google Scholar] [CrossRef]
- Khuathan, N.; Pongjanyakul, T. Modification of quaternary polymethacrylate films using sodium alginate: Film characterization and drug permeability. Int. J. Pharm. 2014, 460, 63–72. [Google Scholar] [CrossRef]
- Arica, B.; Calis, S.; Kas, H.S.; Sargon, M.F.; Hincal, A.A. 5-Fluorouracil encapsulated alginate beads for the treatment of breast cancer. Int. J. Pharm. 2002, 242, 267–269. [Google Scholar] [CrossRef]
- Agüero, L.; Zaldivar-Silva, D.; Pena, L.; Dias, M.L. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym. 2017, 168, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.-N.; Li, S.-J.; Li, G.-Q. Sodium alginate coated mesoporous silica for dual bio-responsive controlled drug delivery. J. Drug Deliv. Sci. Technol. 2018, 46, 348–353. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Z.; Liu, B.; Yang, J.; Yang, X.; Yu, Y. A smart drug delivery system responsive to pH/enzyme stimuli based on hydrophobic modified sodium alginate. Eur. Polym. J. 2020, 133, 109779. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, P.; Tian, H. Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int. J. Biol. Macromol. 2021, 182, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Kaygusuz, H.; Erim, F.B. Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. Reacti. Funct. Polym. 2013, 73, 1420–1425. [Google Scholar] [CrossRef]
- Sowjanya, J.A.; Singh, J.; Mohita, T.; Sarvanan, S.; Moorthi, A.; Srinivasan, N.; Selvamurugan, N. Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf. B Biointerfaces 2013, 109, 294–300. [Google Scholar] [CrossRef]
- Hambleton, A.; Voilley, A.; Debeaufort, F. Transport parameters for aroma compounds through i-carrageenan and sodium alginate-based edible films. Food Hydrocoll. 2011, 25, 1128–1133. [Google Scholar] [CrossRef]
- Galus, S.; Lenart, A. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 2013, 115, 459–465. [Google Scholar] [CrossRef]
- Pongjanykul, T.; Suksri, H. Nicotine-loaded sodium alginate-magnesium aluminium silicate (SA-MAS) films: Importance of SA-MAS ratio. Carbohydr. Polym. 2010, 80, 1018–1027. [Google Scholar] [CrossRef]
- Abdollahi, M.; Alboofetileh, M.; Rezaei, M.; Behrooz, R. Comparing physical-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll. 2013, 32, 416–424. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Hosseini, H. Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. J. Food Eng. 2013, 117, 26–33. [Google Scholar] [CrossRef]
- Cavallaro, G.; Gianguzza, A.; Lazzara, G.; Milioto, S.; Piazzese, D. Alginate gel beads filled with halloysite nanotubes. Appl. Clay Sci. 2013, 72, 132–137. [Google Scholar] [CrossRef]
- Kurczewska, J.; Pecyna, P.; Ratajczak, M.; Gajecka, M.; Schroeder, G. Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm. J. 2017, 25, 911–920. [Google Scholar] [CrossRef]
- de Lima, H.H.; Kupfer, V.; Moisés, M.P.; Guilherme, M.R.; Rinaldi, J.D.C.; Felisbino, S.L.; Rubira, A.F.; Rinaldi, A.W. Bionanocomposites based on mesoporous silica and alginate for enhanced drug delivery. Carbohydr. Polym. 2018, 196, 126–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Ma, X.; Guo, N.; Zhang, Y. Preparation and characteristics of sodium alginate/Na(+) rectorite-g-itaconic acid/acrylamide hydrogel films. Carbohydr. Polym. 2014, 105, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Ionita, M.; Pandele, M.A.; Iovu, H. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr. Polym. 2013, 94, 339–344. [Google Scholar] [CrossRef]
- Nie, L.; Liu, C.; Wang, J.; Shuai, Y.; Cui, X.; Liu, L. Effects of surface functionalized graphene oxide on the behavior of sodium alginate. Carbohydr. Polym. 2015, 117, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hui, Z.; Wan, D.; Huang, H.; Huang, J.; Yuan, H.; Yu, J. Alginate microsphere filled with carbon nanotube as drug carrier. Int. J. Biol. Macromol. 2010, 47, 389–395. [Google Scholar] [CrossRef]
- Liakos, I.; Rizzello, L.; Bayer, S.I.; Paolo, P.; Cingolani, P.R.; Athanassiou, A. Controlled antiseptic release by alginate polymer films and beads. Carbohydr. Polym. 2013, 92, 176–183. [Google Scholar] [CrossRef]
- Sookkasem, A.; Chatpun, S.; Yuenyongsawad, S.; Wiwattanapatapee, R. Alginate beads for colon specific delivery of self-emulsifying curcumin. J. Drug Deliv. Sci. Technol. 2015, 29, 159–166. [Google Scholar] [CrossRef]
- Bera, H.; Ippagunta, S.R.; Kumar, S.; Vagala, P. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach specific flurbiprofen delivery. Mater. Sci. Eng. C 2017, 76, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.S.; Nayak, A.K. Alginate-inorganic composite particles as sustained drug delivery matrices. In Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2018; pp. 39–74. [Google Scholar] [CrossRef]
- Tonnesen, H.H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef]
- Depan, D.; Kumar, A.P.; Singh, R.P. Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater. 2009, 5, 93–100. [Google Scholar] [CrossRef]
- des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préa, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 2006, 116, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Puttipipatkhachorn, S.; Pongjanyakul, T.; Priprem, A. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminium silicate, and their physical characteristics. Int. J. Pharm. 2005, 293, 51–62. [Google Scholar] [CrossRef]
- Jain, D.; Bar-Shalom, D. Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm. 2014, 40, 1576–1584. [Google Scholar] [CrossRef]
- Hu, L.; Sun, C.; Song, A.; Di, C.; Zheng, X.; Gao, Y.; Jiang, T.; Wang, S. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin. Asian J. Pharm. Sci. 2014, 9, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.T.; Wu, K.C.W.; Yu, J. Synthesis of mesoporous silica nanoparticle-encapsulated alginate microparticles for sustained release and targeting therapy. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 102B, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Galarneau, A.; Barodawalla, A.; Pinnavaia, T. Porous clay heterostructures formed by gallery-templated synthesis. Nature 1995, 374, 529–531. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Garcia-Sancho, C.; Vilarassa-Garcia, E.; Jimenez-Jimenez, J.; Rodriguez-Castellon, E. Synthesis, characterization, uses and applications of porous clays heterostructures: A Review. Chem. Rec. 2018, 18, 1085–1104. [Google Scholar] [CrossRef]
- Enotiadis, A.; Tsokaridou, M.; Chalmpes, N.; Sakavitsi, V.; Spyrou, K.; Gournis, D. Synthesis and characterization of porous clay-organic heterostructures. J. Sol-Gel Sci. Technol. 2019, 91, 295–301. [Google Scholar] [CrossRef]
- Perdigon, A.C.; Li, D.; Pesquera, C.; Gonzalez, F.; Ortiz, B.; Aguado, F.; Blanco, C. Synthesis of porous clay heterostructures from high charge mic-type aluminosilicates. J. Mater. Chem. A 2013, 1, 1213–1219. [Google Scholar] [CrossRef]
- Rubiyanto, D.; Prakoso, N.I.; Sahroni, I.; Nurillahi, R.; Fatimah, I. ZnO-porous clay heterostructures from saponite as green catalyst for citronelllal cyclization. Bull. Chem. Recat. Eng. Catal. 2020, 15, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Srithammaraj, K.; Magaraphan, R.; Manuspiya, H. Surfactant-templated synthesis of modified porous clay heterostructures (PCH). Adv. Mater. Res. 2008, 55–57, 317–320. [Google Scholar] [CrossRef]
- Gârea, S.A.; Mihai, A.I.; Vasile, E.; Nistor, C.; Sârbu, A.; Mitran, R. Synthesis of new porous clay heterostructures: The influence of co-surfactant type. Mater. Chem. Phys. 2016, 179, 17–26. [Google Scholar] [CrossRef]
- Polverejan, M.; Pauly, T.R.; Pinnavaia, T.J. Acidic porous clay heterostructures (PCH): Intragallery assembly of mesoporous silica in synthetic saponite clays. Chem. Mater. 2000, 12, 2698–2704. [Google Scholar] [CrossRef]
- Mihai, A.I.; Garea, S.A.; Pandele, A.M.; Iovu, H. Properties of hybrid films based on poly(vinyl) alcohol and porous clay heterostructures. UPB Sci. Bull. 2017, 79, 58–66. [Google Scholar]
- Mihai (Voicu), A.I.; Garea, S.A.; Eugeniu, V.; Nistor, L.C.; Iovu, H. Functionalization of porous clay heterostructures with silane coupling agents. Mater. Plast. 2017, 54, 341–344. [Google Scholar] [CrossRef]
- Palkova, H.; Madejova, J.; Zimowska, M.; Sewicka, E.M. Laponite-derived porous clay heterostructures: II. FTIR study of the structure evolution. Microporous Mesoporous Mater. 2010, 127, 237–244. [Google Scholar] [CrossRef]
- Wang, Y.; Su, X.; Xu, Z.; Wen, K.; Zhang, P.; Zhu, J.; He, H. Preparation of surface-functionalized porous clay heterostructures via carbonization of soft-template and their adsorption performance for toluene. Appl. Surf. Sci. 2016, 363, 113–121. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Garcia-Sancho, C.; Franco, F. Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous Mesoporous Mater. 2013, 176, 95–102. [Google Scholar] [CrossRef]
- Kooli, F.; Liu, Y.; Hbaieb, K.; Al-Faze, R. Characterization and catalytic properties of porous clay heterostructures from zirconium intercalated clay and its pillared derivatives. Microporous Mesoporous Mater. 2016, 226, 482–492. [Google Scholar] [CrossRef]
- Bunnak, N.; Laoratanakul, P.; Bhalla, A.S.; Manuspiya, H. Surface-Modified Porous Clay Heterostructure Synthesized by Introduction of Cationic Ions: Effects on Dielectric Behavior. Feeoelectrics 2014, 473, 187–197. [Google Scholar] [CrossRef]
- Chotiradsirikun, S.; Guo, R.; Bhalla, A.S.; Manuspiya, H. Nouvel synthesis route of porous clay heterostructures via mixed surfactant template and their dielectric behavior. J. Porous Mater. 2021, 28, 117–178. [Google Scholar] [CrossRef]
- Al Dmour, H.; Kooli, F.; Mohmoud, A.; Liu, Y.; Popoola, S.A. Al and Zr porous clay heterostructures as removal agents of basic blue-41 dye from an artificially polluted solution: Regeneration properties and batch design. Materials 2021, 14, 2528. [Google Scholar] [CrossRef]
- Kooli, F.; Liu, Y.; Hbaieb, K.; Al-Faze, R. Factors that affect the thermal stability and properties of Zr-porous clay heterostructures. J. Therm. Anal. Calorim. 2016, 126, 1143–1155. [Google Scholar] [CrossRef]
- Sanchis, R.; Cecilia, J.A.; Soriano, M.D.; Vázquez, M.I.; Dejoz, A.; Nieto, J.M.L.; Castellón, E.R.; Solsona, B. Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chem. Eng. J. 2018, 334, 1159–1168. [Google Scholar] [CrossRef]
- Vilarrasa-Garcia, E.; Cecilia, J.A.; Azevedo, D.C.S.; Cavalcante, C.L., Jr.; Rodrigues-Castellon, E. Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture. Microporous Mesoporous Mater. 2017, 249, 25–33. [Google Scholar] [CrossRef]
- Aguiar, J.E.; Cecilia, J.A.; Tavares, P.A.S.; Azeveda, D.C.S.; Rodriguez Castellon, E.; Lucena, S.M.P.; Silva Junior, I.J. Adsorption study of reactive dyes onto porous clay heterostructures. Appl. Clay Sci. 2017, 135, 35–44. [Google Scholar] [CrossRef]
- Tassanapayak, R.; Magaraphan, R.; Manuspiya, H. functionalized porous clay heterostructures for heavy metal adsorption from wastewater. Adv. Mater. Res. 2008, 55–57, 617–620. [Google Scholar] [CrossRef]
- Yuan, M.; Su, Y.; Deng, W.; Zhou, H. Porous clay heterostructures (PCH) modified with copper ferrite spinel as catalyst for SCR of NO with C3H6. Chem. Eng. J. 2019, 375, 122091. [Google Scholar] [CrossRef]
- Soriano, M.D.; Cecilia, J.A.; Natoli, A.; Jimenez-Jimenez, J.; Nieto, J.M.L.; Rodriguez-Castellon, E. Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur. Catal. Today 2015, 254, 36–42. [Google Scholar] [CrossRef]
- Chmielarz, L.; Kowalczyk, A.; Skoczek, M.; Rutkowska, M.; Gil, B.; Natkanski, P.; Radko, M.; Motak, M.; Debek, R.; Ryczkowski, J. Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Appl. Clay Sci. 2018, 160, 116–125. [Google Scholar] [CrossRef]
- Kooli, F. Porous clay heterostructures (PCHs) from Al13-intercalated and Al13-pillared montmorillonite: Properties and heptane hydro-isomerization catalytic activity. Microporous Mesoporous Mater. 2014, 184, 184–192. [Google Scholar] [CrossRef]
- Gârea, S.A.; Mihai, A.I.; Ghebaur, A.; Nistor, C.; Sârbu, A. Porous clay heterostructures: A new inorganic host for 5-fluorouracil encapsulation. Int. J. Pharm. 2015, 491, 299–309. [Google Scholar] [CrossRef]
- Garea, S.A.; Mihai, A.I.; Ghebaur, A. Hybrid films based on sodium alginate and porous clay heterostructures. Mater. Plast. 2015, 52, 275–280. [Google Scholar]
- Son, Y.; Kim, T.-H.; Kim, D.; Hwang, Y. Porous clay heterostructures with alginate encapsulation for toluene removal. Nanomaterials 2021, 11, 388. [Google Scholar] [CrossRef]
- Chiewa, C.S.C.; Poh, P.E.; Pasbakhsh, P.; Tey, B.T.; Yeoh, H.K.; Chan, E.S. Physicochemical characterization of halloysite/alginate bionanocomposites hydrogel. Appl. Clay Sci. 2014, 101, 444–454. [Google Scholar] [CrossRef]
- Xiao, Q.; Gu, X.; Tan, S. Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy. Food Chem. 2014, 164, 179–184. [Google Scholar] [CrossRef]
- Kang, H.; Shu, Y.; Li, Z.; Guan, B.; Peng, S.; Huang, Y.; Liu, R. An effect of alginate on the stability of LDH nanosheets in aqueous solution and preparation of alginate/LDH nanocomposites. Carbohydr. Polym. 2014, 100, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Abou Taleb, M.F.; Hegazy, D.E.; Ismail, S.A. Radiation synthesis, characterization and dye adsorption of alginate-organophilic montmorillonite nanocomposite. Carbohydr. Polym. 2012, 87, 2263–2269. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, Y.; Xu, X.; Zhang, M.; Ma, L. Structure regulation of bentonite-alginate nanocomposites for controlled release of imidacloprid. ACS Omega 2020, 5, 10068–10076. [Google Scholar] [CrossRef]
- Reddy, O.S.; Subha, M.C.S.; Jithendra, T.; Madhavi, C.; Rao, K.C. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery. J. Pharm. Anal. 2021, 2, 191–199. [Google Scholar] [CrossRef]
- Alcantara, A.C.S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery system. J. Mater. Chem. 2010, 20, 9495–9504. [Google Scholar] [CrossRef]
- Zang, J.P.; Wang, Q.; Xie, X.L.; Li, X.; Wang, A.Q. Preparation of swelling properties of pH-sensitive sodium alginate/layered double hydroxides hybrid beads for controlled release of diclofenac sodium. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 92, 205–214. [Google Scholar] [CrossRef] [PubMed]
NaAlg | PCH | 5-FU | |||
---|---|---|---|---|---|
Wavenumber (cm−1) | Type of vibrations | Wavenumber (cm−1) | Type of vibrations | Wavenumber (cm−1) | Type of vibrations) |
3343 | Symmetric stretching vibration of hydroxyl group (OH) | 3736 | Stretching vibration of the OH group from Si–OH | 1661 | Stretching vibration C=C Stretching vibration of carbonyl group (C=O) |
1600 | Symmetric stretching vibration of carboxylate group (COO−) | 3434 | Stretching vibration of the OH group of water molecules adsorbed on PCH | 1425 | Bending vibration of N–H |
1408 | Asymmetric stretching vibration of carboxylate group (COO−) | 1631 | Bending vibration of adsorbed water molecules | 1247 | Stretching vibration of the aromatic ring |
1086 1036 | Stretching vibration of C–O–C | 1078 | Stretching vibrations of three dimensional silica network | - | - |
- | - | 807 | Symmetric stretching vibrations of Si–O–Si or Si–O–Al | - | - |
Sample | Td15% (°C) * | Td 40% (°C) ** |
---|---|---|
NaAlg-5-FU | 194 | 284 |
NaAlg-5-FU-PCHs 1 wt% | 194 | 285 |
NaAlg-5-FU-PCHs 3 wt% | 196 | 287 |
NaAlg-5-FU-PCHs 10 wt% | 201 | 303 |
Sample | EE, % |
---|---|
NaAlg-5-FU | 60 |
NaAlg-5-FU-PCHs 1 wt% | 70 |
NaAlg-5-FU-PCHs 3 wt% | 70 |
NaAlg-5-FU-PCHs 10 wt% | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voicu, A.I.; Gȃrea, S.A.; Vasile, E.; Ghebaur, A.; Iovu, H. Hybrid Hosts Based on Sodium Alginate and Porous Clay Heterostructures for Drug Encapsulation. Polymers 2021, 13, 2803. https://doi.org/10.3390/polym13162803
Voicu AI, Gȃrea SA, Vasile E, Ghebaur A, Iovu H. Hybrid Hosts Based on Sodium Alginate and Porous Clay Heterostructures for Drug Encapsulation. Polymers. 2021; 13(16):2803. https://doi.org/10.3390/polym13162803
Chicago/Turabian StyleVoicu (Mihai), Anda Ionelia, Sorina Alexandra Gȃrea, Eugeniu Vasile, Adi Ghebaur, and Horia Iovu. 2021. "Hybrid Hosts Based on Sodium Alginate and Porous Clay Heterostructures for Drug Encapsulation" Polymers 13, no. 16: 2803. https://doi.org/10.3390/polym13162803
APA StyleVoicu, A. I., Gȃrea, S. A., Vasile, E., Ghebaur, A., & Iovu, H. (2021). Hybrid Hosts Based on Sodium Alginate and Porous Clay Heterostructures for Drug Encapsulation. Polymers, 13(16), 2803. https://doi.org/10.3390/polym13162803