Effect of Position and Structure of the Terminal Moieties in the Side Group on the Liquid Crystal Alignment Behavior of Polystyrene Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of #-(Tert-butyl)-phenoxymethyl-Substituted Polystyrene (P#TB)
2.3. Preparation of 4-Cumyl-phenoxymethyl-Substituted Polystyrene (PCUM)
2.4. Preparation of 4-Trityl-phenoxymethyl-Substituted Polystyrene (PTRI)
2.5. Film Preparation and LC Cell Assembly
2.6. Instrumentation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scharf, T. Polarized Light in Liquid Crystals and Polymers, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 103–141. ISBN 978-0-470-07436-7. [Google Scholar]
- Hamley, I.W. Introduction to Soft Matter: Polymers, Colloids, Amphiphiles, and Liquid Crystals, 1st ed.; John Wiley & Sons: West Sussex, UK, 2000; pp. 267–311. ISBN 978-0471899518. [Google Scholar]
- Khoo, C.H.; Simoni, F. Physics of Liquid Crystalline Materials, 1st ed.; Gordon & Breach Publishers: Philadelphia, PA, USA, 1991; pp. 3–29. ISBN 978-2881244810. [Google Scholar]
- De Gennes, P.G. The Physics of Liquid Crystals, 1st ed.; Oxford University Press: Oxford, UK, 1974; pp. 1–18, 23–50. ISBN 978-0198512851. [Google Scholar]
- Chandrasekhar, S. Liquid Crystals, 1st ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 1–84. ISBN 978-0511622496. [Google Scholar]
- Kim, D.; Jahn, A.; Cho, S.; Kim, J.S.; Ki, M.; Kim, D. Lyotropic Liquid Crystal Systems in Drug Delivery: A Review. J. Pharm. Investig. 2015, 45, 1–11. [Google Scholar] [CrossRef]
- Mezzenga, R.; Schurtenberger, P.; Burbidge, A.; Michel, M. Understanding Foods as Soft Materials. Nat. Mater. 2005, 4, 729–740. [Google Scholar] [CrossRef]
- Drummond, C.J.; Fong, C. Surfactant Self-Assembly Objects as Novel Drug Delivery Vehicles. Curr. Opin. Colloid Interface Sci. 1999, 4, 449–456. [Google Scholar] [CrossRef]
- Guo, C.; Wang, J.; Cao, F.; Lee, R.J.; Zhai, G. Lyotropic Liquid Crystal Systems in Drug Delivery. Drug Discov. Today 2010, 15, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Landau, E.M.; Rosenbusch, J.P. Lipidic Cubic Phases: A Novel Concept for the Crystallization of Membrane Proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 14532–14535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clogston, J.; Caffrey, M. Controlling Release from the Lipidic Cubic Phase. Amino Acids, Peptides, Proteins and Nucleic Acids. J. Control. Release 2005, 107, 97–111. [Google Scholar] [CrossRef]
- Ubbink, J.; Burbidge, A.; Mezzenga, R. Food Structure and Functionality: A Soft Matter Perspective. Soft Matter 2008, 4, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- Mohammady, S.Z.; Pouzot, M.; Mezzenga, R. Oleoylethanolamide-Based Lyotropic Liquid Crystals as Vehicles for Delivery of Amino Acids in Aqueous Environment. Biophys. J. 2009, 96, 1537–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komisarski, M.; Osornio, Y.M.; Siegel, J.S.; Landau, E.M. Tailored Host-Guest Lipidic Cubic Phases: A Protocell Model Exhibiting Nucleic Acid Recognition. Chem. Eur. J. 2013, 19, 1262–1267. [Google Scholar] [CrossRef]
- Demus, D.G.; Gray, J.; GW, S.H.-W.; Vill, V. Handbook of Liquid Crystals, 1st ed.; Wiley-VCH: Weinheim, Germany, 1998; pp. 44–63. ISBN 978-3-527-62076-0. [Google Scholar]
- Popov, P.; Mann, E.K.; Jákli, A. Thermotropic Liquid Crystal Films for Biosensors and Beyond. J. Mat. Chem. B 2017, 5, 5061–5078. [Google Scholar] [CrossRef]
- Collings, P.J.; Goodby, J.W. Introduction to Liquid Crystals, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 29–84. ISBN 9781138298767. [Google Scholar]
- Ye, L.; Zhao, C.; Feng, Y.; Gu, B.; Cui, Y.; Lu, Y. Study on the Polarization of Random Lasers from Dye-Doped Nematic Liquid Crystals. Nanoscale Res. Lett. 2017, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Stöhr, J.; Samant, M.G.; Cossy-Favre, A.; Diaz, J.; Momoi, Y.; Odahara, S.; Nagata, T. Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces. Macromolecules 1998, 31, 1942–1946. [Google Scholar] [CrossRef]
- Xia, C.; Zhou, D.; Su, Y.; Zhou, G.; Yao, L.; Sun, W.; Liu, Y. A Liquid-Crystal-Based Immunosensor for the Detection of Cardiac Troponin I. Analyst 2020, 145, 4569–4575. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjini, B.; Mangaiyarkarasi, R.; Ganesh, V.; Umadevi, S. Vertical Alignment of Liquid Crystals Over a Functionalized Flexible Substrate. Sci. Rep. 2018, 8, 1–13. [Google Scholar]
- Ishihara, S.; Mizusaki, M. Alignment Control Technology of Liquid Crystal Molecules. J. Soc. Inf. Disp. 2020, 28, 44–74. [Google Scholar] [CrossRef]
- Kawatsuki, N.; Matsuyoshi, K.; Hayashi, M.; Takatsuka, H.; Yamamoto, T. Photoreaction of Photo-Cross-Linkable Methacrylate Polymer Films Comprising 2-Cinnamoyloxyethoxybiphenyl Side Group by Linearly Polarized Ultraviolet Light and Liquid Crystal Alignment on the Resultant Films. Chem. Mater. 2000, 12, 1549–1555. [Google Scholar] [CrossRef]
- Rempel, T.D.; Gandy, R.F.; Wootton, A.J. Density Fluctuation Effects on Electron Cyclotron Emission Correlation Measurements in Optically Gray Plasmas. Rev. Sci. Instrum. 1994, 65, 2044–2048. [Google Scholar] [CrossRef]
- Van Aerle, N.; Tol, A. Molecular Orientation in Rubbed Polyimide Alignment Layers Used for Liquid-Crystal Displays. Macromolecules 1994, 27, 6520–6526. [Google Scholar] [CrossRef]
- Park, H.; Lee, J.; Dong, K.; Oh, B.; Kim, Y.; Jeong, H.; Ju, B.; Seo, D. Homeotropic Alignment of Liquid Crystals on a Nano-Patterned Polyimide Surface using Nanoimprint Lithography. Soft Matter 2011, 7, 5610–5614. [Google Scholar] [CrossRef]
- Kang, D.; Kim, S.; Kim, B.; Kim, J.; Ok, C.; Kim, Y.; Han, J.; Kim, J.; Hwang, J.; Oh, B. Liquid Crystal Alignment Effects for Nematic Liquid Crystal on Homeotropic Polyimide Surface using New Ion-Beam Source. Jpn. J. Appl. Phys. 2007, 46, 6601. [Google Scholar] [CrossRef]
- Chae, B.; Lee, S.W.; Ree, M.; Jung, Y.M.; Kim, S.B. Photoreaction and Molecular Reorientation in a Nanoscaled Film of Poly (Methyl 4-(Methacryloyloxy) Cinnamate) Studied by Two-Dimensional FTIR and UV Correlation Spectroscopy. Langmuir 2003, 19, 687–695. [Google Scholar] [CrossRef]
- Kim, J.B.; Kim, K.C.; Ahn, H.J.; Hwang, B.H.; Hyun, D.C.; Baik, H.K. Variable Liquid Crystal Pretilt Angles on Various Compositions of Alignment Layers. Appl. Phys. Lett. 2007, 90, 043515. [Google Scholar] [CrossRef]
- Ishihara, S.; Wakemoto, H.; Nakazima, K.; Matsuo, Y. The Effect of Rubbed Polymer Films on the Liquid Crystal Alignment. Liq. Cryst. 1989, 4, 669–675. [Google Scholar] [CrossRef]
- Stöhr, J.; Samant, M.G. Liquid Crystal Alignment by Rubbed Polymer Surfaces: A Microscopic Bond Orientation Model. J. Electron Spectrosc. Relat. Phenom. 1999, 98, 189–207. [Google Scholar] [CrossRef]
- Liaw, D.; Wang, K.; Huang, Y.; Lee, K.; Lai, J.; Ha, C. Advanced Polyimide Materials: Syntheses, Physical Properties and Applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Pattison, L.R.; Hexemer, A.; Kramer, E.J.; Krishnan, S.; Petroff, P.M.; Fischer, D.A. Probing the Ordering of Semiconducting Fluorene-Thiophene Copolymer Surfaces on Rubbed Polyimide Substrates by Near-Edge X-Ray Absorption Fine Structure. Macromolecules 2006, 39, 2225–2231. [Google Scholar] [CrossRef]
- Wu, W.; Wang, C.; Fuh, A.Y. Controlling Pre-Tilt Angles of Liquid Crystal using Mixed Polyimide Alignment Layer. Opt. Express 2008, 16, 17131–17137. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, J.; Wang, K.; Fan, L.; Yang, S. Synthesis and Characterization of Novel Fluorinated Polyimides Derived from 4,4′-[2,2,2-Trifluoro-1-(3,5-Ditrifluoromethylphenyl) Ethylidene] Diphthalic Anhydride and Aromatic Diamines. Polymer 2006, 47, 1443–1450. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.Y.; Park, I.C.; Rho, B.G.; Park, J.S.; Park, H.S.; Lee, C.H. Rubbing-Free, Vertically Aligned Nematic Liquid Crystal Display Controlled by in-Plane Field. Appl. Phys. Lett. 1997, 71, 2851–2853. [Google Scholar] [CrossRef]
- Bechtold, I.H.; De Santo, M.P.; Bonvent, J.; Oliveira, E.A.; Barberi, R.; Rasing, T. Rubbing-Induced Charge Domains Observed by Electrostatic Force Microscopy: Effect on Liquid Crystal Alignment. Liq. Cryst. 2003, 30, 591–598. [Google Scholar] [CrossRef]
- Kim, J.; Acharya, B.R.; Kumar, S.; Ha, K.R. A Method for Liquid Crystal Alignment using in Situ Ultraviolet Exposure during Imidization of Polyimide. Appl. Phys. Lett. 1998, 73, 3372–3374. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Kozenkov, V.M.; Kwok, H. Photoalignment of Liquid Crystalline Materials: Physics and Applications, 1st ed.; John Wiley & Sons: West Sussex, UK, 2008; pp. 69–93, 101–131. ISBN 978-0-470-06539-6. [Google Scholar]
- Seki, T.; Nagano, S.; Hara, M. Versatility of Photoalignment Techniques: From Nematics to a Wide Range of Functional Materials. Polymer 2013, 54, 6053–6072. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, M.; Kelly, S.M. Photoinduced Surface Alignment for Liquid Crystal Displays. J. Phys. D Appl. Phys. 2000, 33, 67–84. [Google Scholar] [CrossRef]
- Ahn, H.J.; Kim, J.B.; Kim, K.C.; Hwang, B.H.; Kim, J.T.; Baik, H.K.; Park, J.S.; Kang, D. Liquid Crystal Pretilt Angle Control using Adjustable Wetting Properties of Alignment Layers. Appl. Phys. Lett. 2007, 90, 253505. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, Y.W.; Ha, J.D.; Oh, J.M.; Yi, M.H. Synthesis and Characterization of Novel Polyimides with 1-Octadecyl Side Chains for Liquid Crystal Alignment Layers. Polym. Adv. Technol. 2007, 18, 226–234. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, S.I.; Park, Y.H.; Reea, M.; Rim, Y.N.; Yoon, H.J.; Kim, H.C.; Kim, Y.B. Liquid-Crystal Alignment on the Rubbed Film Surface of Semi-Flexible Copolyimides Containing n-Alkyl Side Groups. Mol. Cryst. Liq. Cryst. 2000, 349, 279–282. [Google Scholar] [CrossRef]
- Lee, S.W.; Chae, B.; Lee, B.; Choi, W.; Kim, S.B.; Kim, S.I.; Park, S.; Jung, J.C.; Lee, K.H.; Ree, M. Rubbing-Induced Surface Morphology and Polymer Segmental Reorientations of a Model Brush Polyimide and Interactions with Liquid Crystals at the Surface. Chem. Mater. 2003, 15, 3105–3112. [Google Scholar] [CrossRef]
- Lee, S.B.; Shin, G.J.; Chi, J.H.; Zin, W.; Jung, J.C.; Hahm, S.G.; Ree, M.; Chang, T. Synthesis, Characterization and Liquid-Crystal-Aligning Properties of Novel Aromatic Polypyromellitimides Bearing (n-Alkyloxy) Biphenyloxy Side Groups. Polymer 2006, 47, 6606–6621. [Google Scholar] [CrossRef]
- Ju, C.; Kim, T.; Kang, H. Liquid Crystal Alignment Behaviors on Capsaicin Substituted Polystyrene Films. RSC Adv. 2017, 7, 41376–41383. [Google Scholar] [CrossRef] [Green Version]
- Ju, C.; Kim, T.; Kang, H. Renewable, Eugenol-Modified Polystyrene Layer for Liquid Crystal Orientation. Polymers 2018, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Ju, C.; Park, C.; Kim, T.; Kang, H. Vertical Alignment of Liquid Crystals on Plant-Based Vanillin Derivative-Substituted Polystyrene Films. RSC Adv. 2019, 9, 14188–14193. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Ju, C.; Kang, H. Vertical Liquid Crystal Orientation of Phytochemical-Based Oryzanol Modified Polystyrene. RSC Adv. 2018, 8, 1569–1575. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Ju, C.; Kang, H. Vertical Alignment of Liquid Crystal on Tocopherol-Substituted Polystyrene Films. Liq. Cryst. 2018, 45, 801–810. [Google Scholar] [CrossRef]
- Seo, K.; Kang, H. Vertical Orientation of Liquid Crystal on Comb-Like 4-(trans-4-Alkylcyclohexyl) Phenoxymethyl-Substituted Polystyrene Containing Liquid Crystal Precursor. Polymers 2021, 13, 1404. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Kang, H. Vertical Orientation of Liquid Crystal on Polystyrene Substituted with n-Alkylbenzoate-p-Oxymethyl Pendant Group as a Liquid Crystal Precursor. Polymers 2021, 13, 2058. [Google Scholar] [CrossRef]
- Seo, K.; Kang, H. Vertical Orientation of Liquid Crystal on 4-n-Alkyloxyphenoxymethyl-Substituted Polystyrene Containing Liquid Crystal Precursor. Polymers 2021, 13, 736. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Hetayothin, B. Effect of Structure and Plasticizer on the Glass Transition of Adsorbed Polymer. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 2010. [Google Scholar]
- Cheng, S.; Chung, T. Configuration Effects of Ortho, Meta, and Para Linkages on Liquid Crystallinity during Thin-film Polymerization of Poly (Ester-amide)’s. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2221–2231. [Google Scholar] [CrossRef]
- Pan, R.; Zhao, W.; Zhou, T.; Zhang, A. Effect of Alkyl Side Group Length on the Properties of Polyetherimides from Molecular Simulation Combined with Experimental Results. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 595–599. [Google Scholar] [CrossRef]
- Rauzy, E.; Berro, C.; Morel, S.; Herbette, G.; Lazzeri, V.; Guglielmetti, R. Modelling of the Interactions between a Photochromic Naphthopyran and a Poly (Methyl Methacrylate) Matrix through the Variation of the Glass Transition Temperature and Application of the Energy/Volume/Mass (EVM) Model. Polym. Int. 2004, 53, 455–459. [Google Scholar] [CrossRef]
- Kang, H.; Seo, J.G.; Kang, D.; Lee, J. Liquid Crystal Alignment Properties of Poly (Styrenesulphonate)/Alkyltrimethylammonium Complexes. Liq. Cryst. 2013, 40, 492–498. [Google Scholar] [CrossRef]
- Weng, L.; Liao, P.C.; Lin, C.C.; Ting, T.L.; Hsu, W.H.; Su, J.J.; Chien, L.C. Anchoring Energy Enhancement and Pretilt Angle Control of Liquid Crystal Alignment on Polymerized Surfaces. AIP Adv. 2015, 5, 097218. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.B.; Lee, H.K.; Park, J.C.; Kim, Y.B. The Structural Effects on the Pretilt Angle of Alignment Materials with Alkylcyclohexylbenzene as a Side Group in Polyimides. Mol. Cryst. Liq. Cryst. 2005, 439, 161–172. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, S.J.; Hahm, S.G.; Lee, T.J.; Lee, B.; Chae, B.; Kim, S.B.; Jung, J.C.; Zin, W.C.; Sohn, B.H. Role of the n-Alkyl End of Bristles in Governing Liquid Crystal Alignment at Rubbed Films of Brush Polymer Rods. Macromolecules 2005, 38, 4331–4338. [Google Scholar] [CrossRef]
- Salonen, L.M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chem. Int. Ed. 2011, 50, 4808–4842. [Google Scholar] [CrossRef] [PubMed]
Polymer Designation | Contact Angle (°) a | Surface Energy (mJ/m2) b | Vertical LC Aligning Ability c | |||
---|---|---|---|---|---|---|
Water | Diiodo Methane | Polar | Dispersion | Total | ||
PTRI | 93.0 | 28.5 | 0.6 | 44.4 | 45.0 | X |
PCUM | 61.6 | 37.5 | 14.7 | 34.2 | 48.9 | X |
P2TB | 71.4 | 34.4 | 8.4 | 37.6 | 46.0 | X |
P3TB | 70.8 | 42.2 | 9.9 | 33.4 | 43.3 | X |
P4TB | 89.7 | 46.4 | 2.3 | 34.3 | 36.6 | O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Seo, K.; Kang, H. Effect of Position and Structure of the Terminal Moieties in the Side Group on the Liquid Crystal Alignment Behavior of Polystyrene Derivatives. Polymers 2021, 13, 2822. https://doi.org/10.3390/polym13162822
Yang D, Seo K, Kang H. Effect of Position and Structure of the Terminal Moieties in the Side Group on the Liquid Crystal Alignment Behavior of Polystyrene Derivatives. Polymers. 2021; 13(16):2822. https://doi.org/10.3390/polym13162822
Chicago/Turabian StyleYang, DaEun, Kyutae Seo, and Hyo Kang. 2021. "Effect of Position and Structure of the Terminal Moieties in the Side Group on the Liquid Crystal Alignment Behavior of Polystyrene Derivatives" Polymers 13, no. 16: 2822. https://doi.org/10.3390/polym13162822
APA StyleYang, D., Seo, K., & Kang, H. (2021). Effect of Position and Structure of the Terminal Moieties in the Side Group on the Liquid Crystal Alignment Behavior of Polystyrene Derivatives. Polymers, 13(16), 2822. https://doi.org/10.3390/polym13162822