Radiation-Based Crosslinking Technique for Enhanced Thermal and Mechanical Properties of HDPE/EVA/PU Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the HDPE-EVA-PU Blends
2.3. Characterization of the HDPE-EVA-PU Blends
3. Results and Discussion
3.1. Preparation of HDPE/EVA/PU Blends
3.2. Characterization of HDPE/EVA/PU Blends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials 2019, 12, 1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, R.; Cho, D.C.; Mori, T.; Mizu, T.; Lshi, M. Electrical Properties of Low-density Polyethylene Prepared by Different Manufactur-ing Process. In Proceedings of the 1999 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Austin, TX, USA, 17–20 October1999; pp. 642–645. [Google Scholar]
- De Faria, I.P.; Barreira Martinez, M.L.; de Queiroz, A.A.A. Electrical Performance Evaluation of Plasticized Polyolefin Formulation Developed for Manufacturing Surge Arresters Housings. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3429–3441. [Google Scholar] [CrossRef]
- Li, T. Structural characteristics and application development of polyethylene chemical materials. Chem. Ind. 2014, 32, 20–22. [Google Scholar]
- Yilmaz, G.; Ellingham, T.; Turng, L.S. Improved Processability and the Processing-Structure-Properties Relationship of Ultra-High Molecular Weight Polyethylene via Supercritical Nitrogen and Carbon Dioxide in Injection Molding. Polymers 2018, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Houben, S.J.A.; Verpaalen, R.C.P.; Engels, T.A.P. Processing and Properties of Melt Processable UHMW-PE Based Fibers Using Low Molecular Weight Linear Polyethylene’s. Macromol. Mater. Eng. 2020, 305, 2000360. [Google Scholar] [CrossRef]
- Oblak, P.; Gonzalez-Gutierrez, J.; Zupančič, B.; Aulova, A.; Emri, I. Processability and mechanical properties of extensively recycled high density polyethylene. Polym. Degrad. Stab. 2015, 114, 133–145. [Google Scholar] [CrossRef]
- Kosciuszko, A.; Marciniak, D.; Sykutera, D. Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene. Materials 2021, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Khonakdar, H.A.; Morshedian, J.; Mehrabzadeh, M.; Wagenknecht, U.; Jafari, S.H. Thermal and shrinkage behaviour of stretched peroxide-crosslinked high-density polyethylene. Eur. Polym. J. 2003, 39, 1729–1734. [Google Scholar] [CrossRef]
- Kikugawa, G.; Desai, T.G.; Keblinski, P.; Ohara, T. Effect of crosslink formation on heat conduction in amorphous polymers. J. Appl. Phys. 2013, 114, 034302. [Google Scholar] [CrossRef] [Green Version]
- Morgan, V.T. The thermal conductivity of crosslinked polyethylene insulation in aerial bundled cables. IEEE Trans. Elect. Insul. 1991, 26, 1153–1158. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, K.W.; Kim, B.J. Carbon Fibers from High-Density Polyethylene Using a Hybrid Cross-Linking Technique. Polymers 2021, 13, 2157. [Google Scholar] [CrossRef]
- Bradler, P.R.; Fischer, J.; Wallner, G.M.; Lang, R.W. Characterization of Irradiation Crosslinked Polyamides for Solar Thermal Applications—Basic Thermo-Analytical and Mechanical Properties. Polymers 2018, 10, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.O.; Lim, Y.M.; Park, J.S. Improving thermal stability and mechanical performance of polypropylene/polyurethane blend prepared by radiation-based techniques. Eur. Polym. J. 2017, 94, 366–375. [Google Scholar] [CrossRef]
- Manas, D.; Manas, M.; Mizera, A.; Stoklasek, P.; Navratil, J.; Sehnalek, S.; Drabek, P. The High Density Polyethylene Composite with Recycled Radiation Cross-Linked Filler of rHDPE. Polymers 2018, 10, 1361. [Google Scholar] [CrossRef] [Green Version]
- Tolinski, M. Chapter 15-Crosslinking. In Additives for Polyolefins, Getting the Most Out of Polypropylene, Polyethylene and TPO, 2nd ed.; Elsevier Inc.: Amsterdam, Netherlands, 2015; pp. 215–220. [Google Scholar]
- Kontou, E.; Spathis, G.; Niaounakis, M.; Kefalas, V. Physical and chemical cross-linking effects in polyurethane elastomers. Colloid Polym. Sci. 1990, 268, 636–644. [Google Scholar] [CrossRef]
- Kaltenegger-Uray, A.; Rieß, G.; Lucyshyn, T.; Holzer, C.; Kern, W. Physical Foaming and Crosslinking of Polyethylene with Modified Talcum. Polymers 2019, 11, 1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharjee, P.; Ahearne, M. Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering. Pharmaceutics 2021, 13, 319. [Google Scholar] [CrossRef] [PubMed]
- Bialik-Wąs, K.; Królicka, E.; Malina, D. Impact of the Type of Crosslinking Agents on the Properties of Modified Sodium Alginate/Poly(vinyl Alcohol) Hydrogels. Molecules 2021, 26, 2381. [Google Scholar] [CrossRef]
- Khunmanee, S.; Jeong, Y.; Park, H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. 2017, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rozbeský, D.; Rosůlek, M.; Kukačka, Z.; Chmelík, J.; Man, P.; Novák, P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal. Chem. 2018, 90, 1104–1113. [Google Scholar] [CrossRef]
- Hoffman, E.A.; Frey, B.L.; Smith, L.M.; Auble, D.T. Formaldehyde Crosslinking: A Tool for the Study of Chromatin Complexes. J. Biol. Chem. 2015, 290, 26404–26411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasin, T.; Khan, S.; Shafiq, M.; Gill, R. Radiation crosslinking of styrene–butadiene rubber containing waste tire rubber and polyfunctional monomers. Radiat. Phys. Chem. 2015, 106, 343–347. [Google Scholar] [CrossRef]
- Manas, D.; Ovsik, M.; Mizera, A.; Manas, M.; Hylova, L.; Bednarik, M.; Stanek, M. The Effect of Irradiation on Mechanical and Thermal Properties of Selected Types of Polymers. Polymers 2018, 10, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghobashy, M.M.; Abdeen, Z.I. Radiation Crosslinking of Polyurethanes: Characterization by FTIR, TGA, SEM, XRD, and Raman Spectroscopy. J. Polym. 2016, 2016, 9802514. [Google Scholar] [CrossRef]
- Park, J.S.; Lim, Y.M.; Nho, Y.C. Radiation-Induced Grafting with One-Step Process of Waste Polyurethane onto High-Density Polyethylene. Materials 2016, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Burgstaller, C.; Höftberger, T.; Gallnböck-Wagner, B.; Stadlbauer, W. Effects of radiation type and dose on the properties of selected polymers. Polym. Eng. Sci. 2021, 61, 39–54. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, X.; Chen, L.; Li, Y.; Sun, M.; Duan, X.; Liang, W. Structures and impact strength variation of chemically crosslinked high-density polyethylene: Effect of crosslinking density. RSC Adv. 2021, 11, 6791–6797. [Google Scholar] [CrossRef]
- Son, C.E.; Choi, S.S. Characterization of Poly(ethylene-co-vinyl acetate) (EVA) Using Thermal Analytical Techniques. Elastomers Compos. 2019, 54, 61–69. [Google Scholar]
- Kakkar, D.; Maiti, S.N. Effect of Flexibility of Ethylene Vinyl Acetate and Crystallization of Polypropylene on the Mechanical Properties of i-PP/EVA Blends. J. Appl. Polym. Sci. 2012, 123, 1905–1912. [Google Scholar] [CrossRef]
- Barick, A.K.; Tripathy, D.K. Preparation and characterization of thermoplastic polyurethane/organoclay nanocomposites by melt intercalation technique: Effect of nanoclay on morphology, mechanical, thermal, and rheological properties. J. Appl. Polym. Sci. 2010, 117, 639–654. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, Y.; Wang, Z.; Chen, J.; Fu, L. Influences of PP-g-MA on the surface free energy, morphologies and mechanical properties of thermoplastic polyurethane/polypropylene blends. J. Polym. Res. 2015, 22, 1–10. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, M.; Ning, X.; Chen, X.L. Influences of coupling agent on thermal properties, flammability and mechanical properties of polypropylene/thermoplastic polyurethanes composites filled with expanded graphite. Therm. Anal. Calorim. 2014, 115, 689–695. [Google Scholar] [CrossRef]
- Chae, E.; Cho, S.S. Analysis of Peroxide Curing Agents in EVA Compounds and Vulcanizates. Elastomers Compos. 2020, 55, 6–12. [Google Scholar]
- Salakhov, I.I.; Shaidullin, N.M.; Chalykh, A.E.; Matsko, M.A.; Shapagin, A.V.; Batyrshin, A.Z.; Shandryuk, G.A.; Nifant’ev, I.E. Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends. Polymers 2021, 13, 1821. [Google Scholar] [CrossRef] [PubMed]
- Depan, D.; Chirdon, W.; Khattab, A. Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers. Polymers 2021, 13, 1558. [Google Scholar] [CrossRef] [PubMed]
- Khanam, P.N.; AlMaadeed, M.A.A. Processing and characterization of polyethylene based composites. Adv. Manuf.: Polym. Compos. Sci. 2015, 1, 63–79. [Google Scholar] [CrossRef]
- Tarani, E.; Terzopoulou, Z.; Bikiaris, D.N.; Kyratsi, T.; Chrissafis, K.; Vourlias, G. Thermal conductivity and degradation behavior of HDPE/graphene nanocomposites. J. Therm. Anal. Calorim. 2017, 129, 1715–1726. [Google Scholar] [CrossRef]
- Sobolciak, P.; Abdulgader, A.; Mrlik, M.; Popelka, A.; Abdala, A.A.; Aboukhlewa, A.A.; Karkri, M.; Kiepfer, H.; Bart, H.J.; Krupa, I. Thermally Conductive Polyethylene/Expanded Graphite Composites as Heat Transfer Surface: Mechanical, Thermo-Physical and Surface Behavior. Polymers 2020, 12, 2863. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Kosmela, P.; Barczewski, M.; Hejna, A. Mechanical, Thermal and Rheological Properties of Polyethylene-Based Composites Filled with Micrometric Aluminum Powder. Materials 2020, 13, 1242. [Google Scholar] [CrossRef] [Green Version]
- Amjadi, M.; Fatemi, A. Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate. Polymers 2020, 12, 1857. [Google Scholar] [CrossRef]
- Ferreira, E.H.C.; Vieira, A.A.; Vieira, L.; Fechine, G.J.M. High-Tribological-Performance Polymer Nanocomposites: An Approach Based on the Superlubricity State of the Graphene Oxide Agglomerates. Polymers 2021, 13, 2237. [Google Scholar] [CrossRef] [PubMed]
H | H/U | H/V | H/V/U | |
---|---|---|---|---|
HDPE | 200 g | 200 g | 200 g | 200 g |
EVA | - | - | 20 phr | 20 phr |
PU PE-g-MA | - - | 5 phr 3 phr | - 3 phr | 5 phr 3 phr |
Physical Property | F-Value | p-Value | F Crit |
---|---|---|---|
Gel fraction | 0.04 | 0.96 | 4.26 |
Tensile stress | 1.97 | 0.17 | 3.49 |
Tensile strain | 2.21 | 0.14 | 3.49 |
Flexure stress | 112.43 | 0.00 | 3.49 |
Flexure strain | 9.46 | 0.00 | 3.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-G.; Jeong, J.-O.; Jeong, S.-I.; Park, J.-S. Radiation-Based Crosslinking Technique for Enhanced Thermal and Mechanical Properties of HDPE/EVA/PU Blends. Polymers 2021, 13, 2832. https://doi.org/10.3390/polym13162832
Lee J-G, Jeong J-O, Jeong S-I, Park J-S. Radiation-Based Crosslinking Technique for Enhanced Thermal and Mechanical Properties of HDPE/EVA/PU Blends. Polymers. 2021; 13(16):2832. https://doi.org/10.3390/polym13162832
Chicago/Turabian StyleLee, Jang-Gun, Jin-Oh Jeong, Sung-In Jeong, and Jong-Seok Park. 2021. "Radiation-Based Crosslinking Technique for Enhanced Thermal and Mechanical Properties of HDPE/EVA/PU Blends" Polymers 13, no. 16: 2832. https://doi.org/10.3390/polym13162832
APA StyleLee, J. -G., Jeong, J. -O., Jeong, S. -I., & Park, J. -S. (2021). Radiation-Based Crosslinking Technique for Enhanced Thermal and Mechanical Properties of HDPE/EVA/PU Blends. Polymers, 13(16), 2832. https://doi.org/10.3390/polym13162832