Effect of Aluminum Flakes on Mechanical and Optical Properties of Foam Injection Molded Parts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Base Resin
2.1.2. Pigments
2.1.3. Foam Gas
2.2. Methods
2.2.1. Processing and Foaming
2.2.2. Measurement
3. Results and Discussion
3.1. Appearance Evaluation
3.1.1. Metallic Texture Resulting from Aluminum Particle Addition
3.1.2. Reflectance and Gloss of CIM and FIM
3.2. Lightweight and Mechanical Properties Evaluation
3.2.1. Foaming Ratio
3.2.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mugge, R.; Schoormans, J.P.L. Product design and apparent usability. The influence of novelty in product appearance. Appl. Ergon. 2012, 43, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Jeong, S.J.; Park, S.J. Flake orientation in injection molding of pigmented thermoplastics. J. Manuf. Sci. Eng. Trans. ASME 2012, 134, 1–4. [Google Scholar] [CrossRef]
- Topp, K.; Haase, H.; Degen, C.; Illing, G.; Mahltig, B. Coatings with metallic effect pigments for antimicrobial and conductive coating of textiles with electromagnetic shielding properties. J. Coatings Technol. Res. 2014, 11, 943–957. [Google Scholar] [CrossRef]
- Smith, G.B.; Gentle, A.; Swift, P.; Earp, A.; Mronga, N. Coloured paints based on coated flakes of metal as the pigment, for enhanced solar reflectance and cooler interiors: Description and theory. Sol. Energy Mater. Sol. Cells 2003, 79, 163–177. [Google Scholar] [CrossRef]
- Sung, L.; Nadal, M.E.; Mcknight, M.E.; Marx, E.; Dutruc, R.; Laurenti, B. Optical reflectance of metallic coatings:Effect of aluminum flake orientation. J. Coatings Technol. 2001, 74, 55–63. [Google Scholar] [CrossRef]
- Akafuah, N.K.; Poozesh, S.; Salaimeh, A.; Patrick, G.; Lawler, K.; Saito, K. Evolution of the automotive body coating process—A review. Coatings 2016, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, I.R. Metal pigments and the environment. Surf. Coatings Int. Part B Coatings Int. 2000, 83, 512–514. [Google Scholar] [CrossRef]
- Folgar, F.; Tucker, C.L. Orientation Behavior of Fibers in Concentrated Suspensions. J. Reinf. Plast. Compos. 1984, 3, 98–119. [Google Scholar] [CrossRef]
- Advani, S.G.; Tucker, C.L. The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites. J. Rheol. 1987, 31, 751–784. [Google Scholar] [CrossRef]
- Nikawa, M.; Shirota, T.; Yamagata, H. Influence of resin flow state on aluminum flake orientation in a metallic-like resin product manufactured through injection molding. Int. J. Autom. Technol. 2016, 10, 94–100. [Google Scholar] [CrossRef]
- Bay, R.S.; Tucker, C.L. Fiber orientation in simple injection moldings. Part I: Theory and numerical methods. Polym. Compos. 1992, 13, 317–331. [Google Scholar] [CrossRef]
- Bay, R.S.; Tucker, C.L. Fiber orientation in simple injection moldings. Part II: Experimental results. Polym. Compos. 1992, 13, 332–341. [Google Scholar] [CrossRef]
- Chung, D.H.; Kwon, T.H. Numerical studies of fiber suspensions in an axisymmetric radial diverging flow: The effects of modeling and numerical assumptions. J. Nonnewton. Fluid Mech. 2002, 107, 67–96. [Google Scholar] [CrossRef]
- Wang, J.; O’Gara, J.F.; Tucker, C.L. An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence. J. Rheol. 2008, 52, 1179–1200. [Google Scholar] [CrossRef]
- Phelps, J.H.; Tucker, C.L. An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics. J. Nonnewton. Fluid Mech. 2009, 156, 165–176. [Google Scholar] [CrossRef]
- Park, J.M.; Kwon, T.H. Nonisothermal Transient Filling Simulation of Fiber Suspended Viscoelastic Liquid in a Center-Gated Disk. Polym. Polym. Compos. 2011, 32, 427–437. [Google Scholar] [CrossRef]
- Lim, J.S.; Ban, S.H.; Kim, D.S.; Kwon, K.Y.; Lee, S.H.; Lim, J.K.; Cho, S.H. Development of a noble aluminum-pigmented metallic polymer: Recommendations for visible flow and weld line mitigation. J. Appl. Polym. Sci. 2020, 137, 1–9. [Google Scholar] [CrossRef]
- Park, J.M.; Jeong, S.J.; Park, S.J. Numerical prediction of flake orientation and surface color in injection molding of flake-pigmented thermoplastics. Polym. Polym. Compos. 2011, 32, 1297–1303. [Google Scholar] [CrossRef]
- Technavio. 2021. Available online: https://www.technavio.com/report/aluminum-powders-pastes-and-flakes-market-industry-analysis (accessed on 15 May 2021).
- Villamizar, C.A.; Han, C.D. Studies on structural foam processing II. Bubble dynamics in foam injection molding. Polym. Eng. Sci. 1978, 18, 699–710. [Google Scholar] [CrossRef]
- Han, C.D.; Yoo, H.J. Studies on structural foam processing. IV. Bubble growth during mold filling. Polym. Eng. Sci. 1981, 21, 518–533. [Google Scholar] [CrossRef]
- Lee, J.; Turng, L.S.; Dougherty, E.; Gorton, P. A novel method for improving the surface quality of microcellular injection molded parts. Polymer 2011, 52, 1436–1446. [Google Scholar] [CrossRef]
- Colton, J.S.; Suh, N.P. The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion. Polym. Eng. Sci. 1987, 27, 493–499. [Google Scholar] [CrossRef]
- Okolieocha, C.; Raps, D.; Subramaniam, K.; Altstädt, V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions—A review. Eur. Polym. J. 2015, 73, 500–519. [Google Scholar] [CrossRef]
- Diani, J.; Gall, K. Cell Structure and Dynamic Properties of Injection Molded Polypropylene Foams. Society 2007, 47, 1070–1081. [Google Scholar] [CrossRef]
- Xu, J.; Turng, L.-S. Microcellular Injection Molding; John Wiley: New York, NY, USA, 2010. [Google Scholar]
- Han, E.; Cha, S.W. Factors That Affect Diffuse Reflection Performance of Microcellular Foamed Plastics. Polym.-Plast. Technol. Eng. 2013, 52, 1290–1294. [Google Scholar] [CrossRef]
- Suh, N.P. Impact of Microcellular Plastics on Industrial Practice and Academic Research. Macromol. Symp. 2003, 201, 187–202. [Google Scholar] [CrossRef]
- Fleming, O.S.; Kazarian, S.G. Polymer Processing with Supercritical Fluids. Supercrit. Carbon Dioxide Polym. React. Eng. 2006, 205–238. [Google Scholar] [CrossRef]
- Costantino, M.A.; Pettarin, V.; Pontes, A.J.; Frontini, P.M. Mechanical performance of double gated injected metallic looking polypropylene parts. Express Polym. Lett. 2015, 9, 1040–1051. [Google Scholar] [CrossRef]
- Cha, S.W.; Cho, S.H.; Sohn, J.S.; Ryu, Y.; Ahn, J. Reflectance according to cell size, foaming ratio and refractive index of microcellular foamed amorphous polymer. Int. J. Mol. Sci. 2019, 20, 6068. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, J. Research of Emotional Quality through the Motor Silver Exterior Color Analysis. J. Korea Soc. Color Stud. 2014, 28, 60–69. [Google Scholar]
- Choi, M.J.; Cho, J.; Choi, Y.H.; Choi, M.H.; Lee, C.S.; Sung, H.K.; Lee, S.; Park, K.H.; Hwang, S.J.H. Development of Paint-Free Metallic Plastic Material for Automotive Parts; The Korean Society of Automotive Engineers: Seoul, Korea, 2020; pp. 766–771. [Google Scholar]
- Park, S.H.; Lyu, M.Y. Observation of Two-Dimensional Shaped Aluminum Flake Orientation During Injection Molding and Its Orientation Mechanism. Macromol. Res. 2019, 27, 481–489. [Google Scholar] [CrossRef]
- Han, J.H.; Dae Han, C. Bubble nucleation in polymeric liquids. I. Bubble nucleation in concentrated polymer solutions. J. Polym. Sci. Part B Polym. Phys. 1990, 28, 711–741. [Google Scholar] [CrossRef]
- Bigg, D.M. Mechanical properties of particulate filled polymers. Polym. Compos. 1987, 8, 115–122. [Google Scholar] [CrossRef]
- Osman, A.F.; Mariatti, M. Properties of aluminum filled polypropylene composites. Polym. Polym. Compos. 2006, 14, 623–634. [Google Scholar] [CrossRef]
- Bao, J.B.; Nyantakyi Junior, A.; Weng, G.S.; Wang, J.; Fang, Y.W.; Hu, G.H. Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J. Supercrit. Fluids 2016, 111, 63–73. [Google Scholar] [CrossRef]
- Meng, Z.; Yuan, Q.; Guo, W.; Xia, Z.; Zhou, L.; Hua, L. Cellular structure and mechanical strength of straw fiber/polypropylene plastics under chemical foam molding. J. Text. Inst. 2021, 112, 109–116. [Google Scholar] [CrossRef]
Grade | TFP 013-30-E1 | TFP 032-30-E1 | SVT 460-30-E1 | SS 960-30-E1 |
---|---|---|---|---|
Type | Silver Dollar | Silver Dollar | Silver Dollar | Cornflake |
Particle size (μm) | 13 | 32 | 65 | 14 |
Specific gravity | 1.72 | 1.72 | 1.69 | 1.72 |
Parameter | Experimental Conditions of Injection Molding Machine | |||||
---|---|---|---|---|---|---|
CIM | FIM | |||||
Injection | Temp. (°C) | Nozzle | Heater 1 | Heater 2 | Heater 3 | Heater 4 |
220 | 210 | 200 | 190 | 180 | ||
Pressure (MPa) | 7 | |||||
Speed (%) | 100 | |||||
Gas | Pressure (MPa) | - | 4 | |||
Blowing agent | - | N2 | ||||
Holding | Pressure (MPa) | 6.5, 3.2 | - | |||
Time (s) | 2, 1 | - | ||||
Mold | Temp. (°C) | 60 | ||||
Room Temp. (°C) | 21 ± 3 | |||||
Cooling | Time (s) | 100 |
Sample 1 | Sample 2 | |||||
---|---|---|---|---|---|---|
Grade | TFP 013-30-E1 | SS 960-30-E1 | ||||
Type | Silver Dollar | Cornflake | ||||
Particle size | 13 μm | 14 μm | ||||
Color space | L* | a* | b* | L* | a* | b* |
81.5 | −0.45 | −1.03 | 75.8 | −0.55 | −1.60 |
Sample 1 | Sample 2 | Sample 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Grade | TFP 013-30-E1 | TFP 032-30-E1 | SVT 460-30-E1 | ||||||
Type | Silver Dollar | ||||||||
Particle size | 13 μm | 32 μm | 65 μm | ||||||
Color space | L* | a* | b* | L* | a* | b* | L* | a* | b* |
81.9 | −0.4 | −0.73 | 79.2 | −0.29 | 0 | 70.3 | −0.67 | −0.02 |
Process | SVT 460-30-E1 (SD Type, 65 μm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CIM | FIM | ||||||||
Al Content (%) | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | |
Color space | L* | 38.7 | 66.7 | 69.5 | 70.3 | 75.3 | 68.2 | 69.9 | 70.8 |
a* | −0.63 | −0.50 | −0.64 | −0.67 | −0.19 | −0.63 | −0.68 | −0.72 | |
b* | −4.36 | 0.34 | 0.07 | −0.02 | −0.46 | −0.16 | −0.16 | −0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Ryu, Y.; Lee, J.-H.; Cha, S.W. Effect of Aluminum Flakes on Mechanical and Optical Properties of Foam Injection Molded Parts. Polymers 2021, 13, 2930. https://doi.org/10.3390/polym13172930
Kim D, Ryu Y, Lee J-H, Cha SW. Effect of Aluminum Flakes on Mechanical and Optical Properties of Foam Injection Molded Parts. Polymers. 2021; 13(17):2930. https://doi.org/10.3390/polym13172930
Chicago/Turabian StyleKim, Donghwi, Youngjae Ryu, Ju-Heon Lee, and Sung Woon Cha. 2021. "Effect of Aluminum Flakes on Mechanical and Optical Properties of Foam Injection Molded Parts" Polymers 13, no. 17: 2930. https://doi.org/10.3390/polym13172930
APA StyleKim, D., Ryu, Y., Lee, J. -H., & Cha, S. W. (2021). Effect of Aluminum Flakes on Mechanical and Optical Properties of Foam Injection Molded Parts. Polymers, 13(17), 2930. https://doi.org/10.3390/polym13172930