Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Verification of the Hypotheses Stated
3.2. Verification of Obtained Results
4. Conclusions
- The linear thermal expansion coefficient significantly depends not only on the temperature but also on the rate of its change.
- The strain response of the polymer to temperature during heating and cooling down, with the same absolute values of the temperature change rate, differs significantly; this difference becomes stronger as the temperature change rate increases.
- During cyclic temperature change of the material, a residual strain is generated due to the difference in the strain response of the polymer to temperature change in the process of heating and cooling down.
Author Contributions
Funding
Conflicts of Interest
References
- Lyu, M.-Y.; Choi, T.G. Research trends in polymer materials for use in lightweight vehicles. Int. J. Precis. Eng. Manuf. 2015, 16, 213–220. [Google Scholar] [CrossRef]
- Blanco, I. The Use of Composite Materials in 3D Printing. J. Compos. Sci. 2020, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Hollaway, L. Polymer Composites for Civil and Structural Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9401121362. [Google Scholar]
- Bartenev, G.M.; Zelenev, Y.V. Physics and Mechanics of Polymers; Vyss. Shkola: Moscow, Russia, 1983; p. 391. [Google Scholar]
- Bartenev, G.M.; Zelenev, Y.V. Course in Polymer Physics; Khimiya Press: Saint Petersburg, Russia, 1976. [Google Scholar]
- Ward, I.M.; Hadley, D.W. An Introduction to the Mechanical Properties of Solid Polymers; Wiley: Hoboken, NJ, USA, 2004; ISBN 0-471-49625-1. [Google Scholar]
- Van Krevelen, D.W.; Te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 0080915108. [Google Scholar]
- Slutsker, A.I.; Gilyarov, V.L.; Polikarpov, Y.I.; Karov, D.D. Thermal expansion of polymers subjected to low-amplitude temperature cycling. Tech. Phys. 2003, 48, 873–879. [Google Scholar] [CrossRef]
- Houwink, R.; Staverman, A. Khimiya i Teknologiya Polimerov (Chemestry and Technology of Polymers); Russian Translation; Khimiya: Moscow, Russia, 1965; Volume 2. [Google Scholar]
- Spencer, R.S. Volume-temperature-time relationships for polystyrene. J. Colloid Sci. 1949, 4, 229–240. [Google Scholar] [CrossRef]
- Teitelbaum, B.Y. Thermomechanical Analysis of Polymers; SU Nauka: Moscow, Russia, 1979. [Google Scholar]
- Hutchinson, J.M.; Kovacs, A.J. A simple phenomenological approach to the thermal behavior of glasses during uniform heating or cooling. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 1575–1590. [Google Scholar] [CrossRef]
- Hutchinson, J.M.; Kovacs, A.J. Effects of thermal history on structural recovery of glasses during isobaric heating. Polym. Eng. Sci. 1984, 24, 1087–1103. [Google Scholar] [CrossRef]
- DSM Desotech Inc. Product Data. DeSolite 3471-1-152A; DSM Desotech Inc.: Elgin, IL, USA, 2015; Available online: https://drive.google.com/file/d/1MODJPy0jBUxYzSzJmQPEaVqoyI-70dBc/view?usp=sharing (accessed on 30 August 2021).
- DSM Desotech Inc. Product Data. DeSolite DS-2015; DSM Desotech Inc.: Elgin, IL, USA, 2015; Available online: https://focenter.com/wp-content/uploads/documents/AngstromBond---Fiber-Optic-Center-AngstromBond-DSM-DS-2015-UV-Cure-Secondary-Coating-(1Kg)-Fiber-Optic-Center.pdf (accessed on 31 March 2020).
- Tong, H.M.; Hsuen, H.K.D.; Saenger, K.L.; Su, G.W. Thickness-direction coefficient of thermal expansion measurement of thin polymer films. Rev. Sci. Instrum. 1991, 62, 422–430. [Google Scholar] [CrossRef]
- Pochan, D.J.; Lin, E.K.; Satija, S.; Cheng, S.Z.D.; Wen-Li, W.U. Thermal expansion and glass transition behaviour of thin polymer films with and without a free surface via neutron reflectometry. MRS Online Proc. Libr. 1998, 543, 163–168. [Google Scholar] [CrossRef]
- Kremer, F.; Serghei, A. Broadband dielectric spectroscopy on the molecular dynamics in thin polymer layers. In Proceedings of the Abstracts of Papers of the American Chemical Society, 234th American Chemical Society Meeting, Boston, MA, USA, 19–23 August 2007; Volume 234. [Google Scholar]
- Beaucage, G.; Composto, R.; Stein, R.S. Ellipsometric study of the glass transition and thermal expansion coefficients of thin polymer films. J. Polym. Sci. Part B Polym. Phys. 1993, 31, 319–326. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1992; ISBN 0198533683. [Google Scholar]
- ISO. International Standard ISO 6721-11:2019(E). In Plastics—Determination of Dynamic Mechanical Properties—Part 11: Glass Transition Temperature; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Product Data. Epo-tek® 330. Available online: https://www.epotek.com/docs/en/Datasheet/330.pdf (accessed on 30 August 2021).
Polymer Grade | Glass Transition Range (DMA), °C at E’, 100 MPa | Glass Transition Range (DMA), °C at E’, 1000 MPa | Coefficient of Expansion (TMA), 500 μm Films in the Glassy Region (×10−6), °C−1 | Coefficient of Expansion (TMA), 500 μm Films in the Rubbery Region (×10−6), °C−1 |
---|---|---|---|---|
13471-1-152A | −54 | −65 | <100 | 660 |
DS-2015 | 80 | 40 | 38 | 196 |
Polymer Grade | CTE in the Glassy Region (×10−6), °C−1 | CTE in the Rubbery Region (×10−6), °C−1 |
---|---|---|
EPO-TEK 330 | −54 | −65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shardakov, I.N.; Trufanov, A.N. Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers. Polymers 2021, 13, 3035. https://doi.org/10.3390/polym13183035
Shardakov IN, Trufanov AN. Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers. Polymers. 2021; 13(18):3035. https://doi.org/10.3390/polym13183035
Chicago/Turabian StyleShardakov, Igor N., and Aleksandr N. Trufanov. 2021. "Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers" Polymers 13, no. 18: 3035. https://doi.org/10.3390/polym13183035
APA StyleShardakov, I. N., & Trufanov, A. N. (2021). Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers. Polymers, 13(18), 3035. https://doi.org/10.3390/polym13183035