The Antifouling and Drag-Reduction Performance of Alumina Reinforced Polydimethylsiloxane Coatings Containing Phenylmethylsilicone Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Equipment
2.2. Preparation of Al2O3 Reinforced Coatings
2.2.1. Al2O3 Reinforced PDMS Topcoat
2.2.2. Preparation of Composite Coatings
2.3. Experiment and Characterization
2.3.1. Contact Angle and Surface Free Energy
2.3.2. Tensile Performance Test
2.3.3. Crosslinking Density Test
2.3.4. Morphology and Roughness
2.3.5. Bacteria Attachment Test
2.3.6. Navicula Tenera Attachment Test
2.3.7. Drag Reduction Test
3. Results and Discussion
3.1. Surface Properties
3.2. Observation of Leached PSO
3.3. Mechanical Properties
3.4. Antifouling Performance
3.4.1. Bacteria Attachment Performance
3.4.2. Navicula Tenera Attachment Performance
3.4.3. Influence of Elastic Modulus
3.5. Drag Reduction Performance
3.6. Discussion
4. Conclusions
- The water contact angle, surface energy and surface roughness of alumina reinforced PSO/PDMS coatings are 100–102°, 24–26 mJ/m2 and 0.14–0.21 μm, respectively. The content and size of alumina has little effect on the water contact angle, surface energy and roughness of the coating.
- The leaching test of silicone oil shows that the increase of alumina content will hinder the leaching of PSO. The hinder effect of nano-alumina is stronger than that of micron alumina.
- The addition of alumina can improve the mechanical properties of the coatings. With the increase of alumina content and the decrease of particle size, the elastic modulus increased from 0.71 MPa to 2.45 MPa, and the Shore hardness increased from 17.1 HA to 22.4 HA.
- Introducing alumina reduces the antifouling properties of the coatings. This is related to the enhancement of mechanical properties. The removal rate of bacteria decreased from 66.37% to 52.31%, and removal rate of Navicula Tenera decreased from 53.36% to 46.26%.
- At 800–1400 rpm, introducing alumina will weaken the drag reduction performance of the coatings, and it is found that the drag reduction rate is inversely proportional to the elastic modulus.
- It is necessary to study the situation that the content of alumina is less than 5% and to carry out a long-term panel test in the sea in future investigation. Moreover, the influence of the thickness of PDMS coating on its antifouling and drag reduction properties and the mechanism are also worth studying in future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, W.; Yang, J.; Guo, H.; Xu, T.; Li, Q.; Wen, C.; Sui, X.; Lin, C.; Zhang, J.; Zhang, L. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix. Chem. Eng. Sci. 2019, 207, 790–798. [Google Scholar] [CrossRef]
- García, S.; Trueba, A.; Boullosa-Falces, D.; Islam, H.; Soares, C.G. Predicting ship frictional resistance due to biofouling using Reynolds- averaged Navier-Stokes simulations. Appl. Ocean Res. 2020, 101, 102203. [Google Scholar] [CrossRef]
- Yang, H.; Guo, X.; Chen, R.; Liu, Q.; Liu, J.; Yu, J.; Lin, C.; Wang, J.; Zhang, M. Enhanced anti-biofouling ability of polyurethane anti-cavitation coating with ZIF-8: A comparative study of various sizes of ZIF-8 on coating. Eur. Polym. J. 2021, 144, 110212. [Google Scholar] [CrossRef]
- Xie, C.; Li, C.; Xie, Y.; Cao, Z.; Li, S.; Zhao, J.; Wang, M. ZnO/Acrylic Polyurethane Nanocomposite Superhydrophobic Coating on Aluminum Substrate Obtained via Spraying and Co-Curing for the Control of Marine Biofouling. Surf. Interfaces 2020, 22, 100833. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, T.; Liu, J.; Zhang, X.; Yang, J.; Hu, W.; Liu, L. Designing novel anti-biofouling coatings on titanium based on the ferroelectric-induced strategy. Mater. Des. 2021, 203, 109584. [Google Scholar] [CrossRef]
- Alzieu, C.L.; Sanjuan, J.; Deltreil, J.P.; Borel, M. Tin contamination in arcachon bay: Effects on oyster shell anomalies. Mar. Pollut. Bull. 1986, 17, 494–498. [Google Scholar] [CrossRef]
- Zhang, X.M.; Li, L.; Zhang, Y. Study on the Surface Structure and Properties of PDMS/PMMA Antifouling Coatings. Phys. Procedia 2013, 50, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Selim, M.S.; Shenashen, M.A.; El-Safty, S.A.; Higazy, S.A.; Selim, M.M.; Isago, H.; Elmarakbi, A. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci. 2017, 87, 1–32. [Google Scholar] [CrossRef]
- Selim, M.S.; Yang, H.; El-Safty, S.A.; Fatthallah, N.A.; Shenashen, M.A.; Wang, F.Q.; Huang, Y. Superhydrophobic coating of silicone/β–MnO 2 nanorod composite for marine antifouling. Colloids Surf. A Physicochem. 2019, 570, 518–530. [Google Scholar] [CrossRef]
- Beigbeder, A.; Degee, P.; Conlan, S.L.; Mutton, R.J.; Clare, A.S.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Dubois, P. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling 2008, 24, 291–302. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Wu, Y.; Liu, J.; Cheng, F.; Jiao, X.; Lai, G. Fabrication of UV-curable solvent-free epoxy modified silicone resin coating with high transparency and low volume shrinkage-ScienceDirect. Prog. Org. Coat. 2019, 129, 96–100. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Z.; Qi, Y. Influence of Epoxy Content on the Properties and Marine Bacterial Adhesion of Epoxy Modified Silicone Coatings. Coatings 2020, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Xia, Z.; Zhang, Y. Characterization and properties of epoxy resin (E-20) modified with silicone intermediate RSN-6018. Prog. Org. Coat. 2018, 114, 115–122. [Google Scholar]
- Du, Y.; Wang, C.; Yang, L.; Wang, F. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600 °C. Corros. Sci. 2020, 169, 108599. [Google Scholar] [CrossRef]
- Ahmad, S.; Gupta, A.P.; Sharmin, E.; Alam, M.; Pandey, S.K. Synthesis, characterization and development of high performance siloxane-modified epoxy paints. Prog. Org. Coat. 2005, 54, 248–255. [Google Scholar] [CrossRef]
- Irani, F.; Jannesari, A.; Bastani, S. Effect of fluorination of multiwalled carbon nanotubes (MWCNTs) on the surface properties of fouling-release silicone/MWCNTs coatings. Prog. Org. Coat. 2013, 76, 375–383. [Google Scholar] [CrossRef]
- Samuel, M.; Bharat, B. Transparent, wear-resistant, superhydrophobic and superoleophobic poly (dimethylsiloxane) (PDMS) surfaces. J. Colloid Interface Sci. 2017, 488, 118–126. [Google Scholar]
- Liu, Y.B.; Liu, J.; Tian, Y.; Zhang, H.; Wang, R.; Zhang, B.; Zhang, H.; Zhang, Q. Robust organic-inorganic composite films with multifunctional properties of superhydrophobicity, self-healing and drag reduction. Ind. Eng. Chem. 2019, 58, 4468–4478. [Google Scholar] [CrossRef]
- Ba, M.; Zhang, Z.; Qi, Y. The Dispersion Tolerance of Micro/Nano Particle in Polydimethylsiloxane and Its Influence on the Properties of Fouling Release Coatings Based on Polydimethylsiloxane. Coatings 2017, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.L.; Li, Y.F.; Guo, X.P.; Liang, X.; Xu, Y.F.; Ding, D.W.; Bao, W.Y.; Dobretsov, S. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement. Biofouling 2016, 32, 763–777. [Google Scholar] [CrossRef]
- Ba, M.; Zhang, Z.; Qi, Y. Fouling Release Coatings Based on Polydimethylsiloxane with the Incorporation of Phenylmethylsilicone Oil. Coatings 2018, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.J.; Qi, Y.H.; Zhang, Z.P. The effect of curing agent and silane coupling agent on the properties of silicone coatings. China Surf. Eng. 2014, 27, 114–119. (In Chinese) [Google Scholar]
- Oliver, J.F.; Mason, S.G. Liquid spreading on rough metal surfaces. J. Mater. Sci. 1980, 15, 431–437. [Google Scholar] [CrossRef]
- Liu, S.K.; Zhang, Z.P.; Qi, Y.H. Effect of Emulsifier on the Structure and Properties of Waterborne Silicone Antifouling Coating. Coatings 2020, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, Z.P.; Qi, Y.H.; Liu, S.H.; Lin, J.G.; Fang, K.; Zhang, Z.W. Experimental methods for evaluation of benthic diatom adhesion on the surface of non-toxic antifouling coatings. Mar. Environ. Sci. 2006, 25, 89–92. (In Chinese) [Google Scholar]
- GB/T 7791-2014. Test Method for Performance of Reducing Frictional Resistance of Antifouling Coatings; Standards Press of China: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Zhao, B.; Qian, Y.; Qian, X.; Fan, J.; Feng, Y. Fabrication and characterization of waterborne polyurethane/silver nanocomposite foams. Polym. Compos. 2019, 40, 1492–1498. [Google Scholar] [CrossRef]
- Han, W.S. Synthesis and characterization of hyperbranched waterborne polyurethane/Ag nanoparticle composites. Polym. Compos. 2018, 39, 6. [Google Scholar] [CrossRef]
- Ba, M.; Zhang, Z.P.; Qi, Y.H. The influence of MWCNTs-OH on the properties of the fouling release coatings based on polydimethylsiloxane with the incorporation of phenylmethylsilicone oil. Prog. Org. Coat. 2019, 130, 132–143. [Google Scholar] [CrossRef]
- Ba, M.; Zhang, Z.P.; Qi, Y.H. The leaching behavior of phenylmethylsilicone oil and antifouling performance in nano-zinc oxide reinforced phenylmethylsilicone oil–Polydimethylsiloxane blend coating. Prog. Org. Coat. 2018, 125, 167–176. [Google Scholar] [CrossRef]
- Ba, M.; Wang, Y.F.; Yan, X.X. Effect of granular particles on the properties of the fouling release coatings based on polydimethylsiloxane with the incorporation of phenylmethylsilicone oil, especially for the leaching behavior of phenylmethylsilicone oil. Prog. Org. Coat. 2019, 136, 105266. [Google Scholar] [CrossRef]
- Martinelli, E.; Guazzelli, E.; Bartoli, C.; Gazzarri, M.; Chiellini, F.; Galli, G.; Callow, M.E.; Callow, J.A.; Finlay, J.A.; Hill, S. Amphiphilic pentablock copolymers and their blends with PDMS for antibiofouling coatings. J. Polym. Sci. A Polym. Chem. 2015, 53, 1213–1225. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, S.; Walker, G.C.; Kavanagh, C.J.; Swain, G.W. Surface elastic modulus of barnacle adhesive and release characteristics from silicone surfaces. Biofouling 2004, 20, 279–289. [Google Scholar] [CrossRef]
- Rahimi, A.; Stafslien, S.J.; Vanderwal, L.; Finlay, J.A.; Clare, A.S.; Webster, D.C. Amphiphilic zwitterionic-PDMS-based surface-modifying additives to tune fouling-release of siloxane-polyurethane marine coatings. Prog. Org. Coat. 2020, 149, 105931. [Google Scholar] [CrossRef]
- Atta, A.M.; El-Newehy, M.H.; Abdulhameed, M.M.; Wahby, M.H.; Hashem, A.I. Seawater absorption and adhesion properties of hydrophobic and superhydrophobic thermoset epoxy nanocomposite coatings. Nanomaterials 2021, 11, 272. [Google Scholar] [CrossRef] [PubMed]
Sample | MA50-5 NA30-5 | MA50-10 NA30-10 | MA50-15 NA30-15 | MA50-20 NA30-20 |
---|---|---|---|---|
PDMS (g) | 100.00 | 100.00 | 100.00 | 100.00 |
Additives and solvent (g) | 25.00 | 25.00 | 25.00 | 25.00 |
PSO (g) | 7.62 | 7.62 | 7.62 | 7.62 |
Micro/nano-alumina (g) | 6.75 | 11.16 | 15.86 | 20.83 |
Coating | Elastic Modulus (MPa) | Fracture Strength (MPa) | Fracture Elongation (%) | Shore Hardness (HA) |
---|---|---|---|---|
A-0 | 0.71 ± 0.16 | 0.40 ± 0.06 | 246.55 ± 2.17 | 17.1 ± 0.21 |
MA50-5 | 0.63 ± 0.07 | 0.13 ± 0.04 | 218.13 ± 3.08 | 18.2 ± 0.31 |
MA50-10 | 1.20 ± 0.09 | 0.52 ± 0.08 | 255.34 ± 2.31 | 18.8 ± 0.17 |
MA50-15 | 1.36 ± 0.01 | 0.34 ± 0.05 | 165.95 ± 1.89 | 19.1 ± 0.25 |
MA50-20 | 1.57 ± 0.06 | 0.42 ± 0.03 | 155.80 ± 1.58 | 19.5 ± 0.16 |
NA30-5 | 1.89 ± 0.05 | 0.50 ± 0.05 | 209.74 ± 2.78 | 19.7 ± 0.21 |
NA30-10 | 2.18 ± 0.03 | 0.77 ± 0.06 | 251.11 ± 2.54 | 20.6 ± 0.37 |
NA30-15 | 2.31 ± 0.07 | 0.89 ± 0.08 | 260.28 ± 2.19 | 21.3 ± 0.25 |
NA30-20 | 2.45 ± 0.05 | 0.76 ± 0.05 | 215.02 ± 2.30 | 22.4 ± 0.31 |
Coating | A-0 | MA50-5 | MA50-10 | MA50-15 | MA50-20 |
Mc | 4648.52 ± 34.86 | 4179.76 ± 157.98 | 4010.85 ± 78.91 | 3994.62 ± 64.97 | 3905.74 ± 53.86 |
Coating | NA30-5 | NA30-10 | NA30-15 | NA30-20 | |
Mc | 3557.16 ± 67.04 | 3328.34 ± 95.81 | 3179.15 ± 73.06 | 3084.30 ± 36.17 |
Sample | Elastic Modulus (MPa) | Fracture Strength (MPa) | Fracture Elongation (%) | Shore Hardness (HA) | Literature |
---|---|---|---|---|---|
P0 | 0.09 | 0.05 | 39.00 | 6.57 | [19] |
M0 | 0.54 ± 0.021 | 0.53 | 273.00 | [29] | |
M0.5 | 0.77 ± 0.026 | 0.55 | 241.00 | [29] | |
M1 | 0.84 ± 0.047 | 0.59 | 189.00 | [29] | |
Z30-1 | 0.44± 0.017 | 19.8 ± 0.37 | [30] | ||
Z50-1 | 0.38 ± 0.021 | 18.7 ± 0.51 | [30] | ||
Z100-1 | 0.32 ± 0.033 | 16.1 ± 0.17 | [30] | ||
Z100-4 | 0.47 ± 0.022 | 21.1 ± 0.41 | [30] | ||
Cu2O-1 | 0.73 ± 0.11 | 31 ± 0.55 | [30] | ||
FSiO2-1 | 0.68 ± 0.08 | 28.7 ± 0.47 | [31] | ||
Fe2O3-1 | 0.54 ± 0.02 | 26.1 ± 1.01 | [31] | ||
NSiO2-1 | 0.5 ± 0.08 | 23.3 ± 0.67 | [31] | ||
ZnO-1 | 0.45 ± 0.11 | 20.2 ± 0.74 | [31] | ||
CaCO3-1 | 0.37 ± 0.07 | 18.2 ± 0.33 | [31] |
Coating | Colony Concentration (×106 CFU/mL) | Bacterial Removal Rate (%) | |
---|---|---|---|
Rinsed | Washed | ||
A-0 | 46 ± 1.31 | 15 ± 0.97 | 66.37 |
MA50-5 | 55 ± 1.43 | 19 ± 1.76 | 65.27 |
MA50-10 | 58 ± 0.94 | 22 ± 1.05 | 61.44 |
MA50-15 | 64 ± 1.47 | 25 ± 1.71 | 59.96 |
MA50-20 | 77 ± 1.79 | 32 ± 1.01 | 58.67 |
NA30-5 | 67 ± 0.91 | 23 ± 1.47 | 65.67 |
NA30-10 | 74 ± 1.45 | 31 ± 2.01 | 59.70 |
NA30-15 | 81 ± 1.21 | 34 ± 0.71 | 57.45 |
NA30-20 | 88 ± 2.11 | 43 ± 0.72 | 52.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zhang, Z.; Qi, Y.; Zhang, H. The Antifouling and Drag-Reduction Performance of Alumina Reinforced Polydimethylsiloxane Coatings Containing Phenylmethylsilicone Oil. Polymers 2021, 13, 3067. https://doi.org/10.3390/polym13183067
Yang Q, Zhang Z, Qi Y, Zhang H. The Antifouling and Drag-Reduction Performance of Alumina Reinforced Polydimethylsiloxane Coatings Containing Phenylmethylsilicone Oil. Polymers. 2021; 13(18):3067. https://doi.org/10.3390/polym13183067
Chicago/Turabian StyleYang, Qiang, Zhanping Zhang, Yuhong Qi, and Hongyang Zhang. 2021. "The Antifouling and Drag-Reduction Performance of Alumina Reinforced Polydimethylsiloxane Coatings Containing Phenylmethylsilicone Oil" Polymers 13, no. 18: 3067. https://doi.org/10.3390/polym13183067
APA StyleYang, Q., Zhang, Z., Qi, Y., & Zhang, H. (2021). The Antifouling and Drag-Reduction Performance of Alumina Reinforced Polydimethylsiloxane Coatings Containing Phenylmethylsilicone Oil. Polymers, 13(18), 3067. https://doi.org/10.3390/polym13183067