Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Production of Cellulose Nanofibrils
2.2.1. Mechanical-Enzymatic Pretreatment
2.2.2. High Pressure Homogenization
2.3. Characterization of Cellulose Nanofibrils
2.3.1. Enzymatic Degradation of Pulp
2.3.2. Transmittance of CNF Dispersions
2.3.3. Intrinsic Viscosity
2.3.4. Morphological Characteristics of CNFs
2.3.5. Mechanical Properties of CNF Films
3. Results and Discussions
3.1. Mechanical-Enzymatic Pretreatment
3.2. Morfological Characteristics of the CNFs
3.3. Effect of Mechanical-Enzymatic Treatment on the Degree of Polymerization of Cellulose
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
P | BHKP |
PR | BHKP—4000 rev PFI |
PE | BHKP—4000 rev PFI—0.05% |
P0 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0%v |
P0.025 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0.025% |
P0.050 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0.05% |
P0.075 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0.075% |
P0.1 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0.1% |
CNF0 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0%—15 pass |
CNF0.025 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0.025%—15 pass |
CNF0.050 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0.050%—15 pass |
CNF0.075 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0.075%—15 pass |
CNF0.100 | BHKP—4000 rev PFI—0.05%–46,000 rev PFI—0.1%—15 pass |
References
- Qing, Y.; Sabo, R.; Zhu, J.Y.; Agarwal, U.; Cai, Z.; Wu, Y. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym. 2013, 97, 226–234. [Google Scholar] [CrossRef]
- Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735–764. [Google Scholar] [CrossRef] [PubMed]
- Grüneberger, F.; Künniger, T.; Zimmermann, T.; Arnold, M. Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 2014, 21, 1313–1326. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016, 93, 2–25. [Google Scholar] [CrossRef]
- Heggset, E.B.; Chinga-Carrasco, G.; Syverud, K. Temperature stability of nanocellulose dispersions. Carbohydr. Polym. 2017, 157, 114–121. [Google Scholar] [CrossRef]
- Albornoz-Palma, G.; Ching, D.; Valerio, O.; Mendonça, R.T.; Pereira, M. Effect of lignin and hemicellulose on the properties of lignocellulose nanofibril suspensions. Cellulose 2020, 26, 1–17. [Google Scholar] [CrossRef]
- ISO. ISO/TS (2017) 20477:2017 Nanotechnologies—Standard Terms and Their Definition for Cellulose Nanomaterial; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Tanaka, R.; Saito, T.; Hondo, H.; Isogai, A. Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromolecules 2015, 16, 2127–2131. [Google Scholar] [CrossRef]
- Spence, K.L.; Venditti, R.A.; Rojas, O.J.; Habibi, Y.; Pawlak, J.J. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 2011, 18, 1097–1111. [Google Scholar] [CrossRef]
- Saito, T.; Nishiyama, Y.; Putaux, J.L.; Vignon, M.; Isogai, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7, 1687–1691. [Google Scholar] [CrossRef]
- Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Lindström, T. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 2007, 8, 1934–1941. [Google Scholar] [CrossRef]
- Delgado Aguilar, M. Nanotecnología en el Sector Papelero: Mejoras en Calidad y Permanencia de las Fibras de alto Rendimiento y Secundarias en una Economía Circular Mediante el uso de Nanofibras y el Refino Enzimático. 2015. Available online: https://dugi-doc.udg.edu/handle/10256/11737 (accessed on 13 September 2020).
- Tarrés, Q.; Saguer, E.; Pèlach, M.A.; Alcalà, M.; Delgado-Aguilar, M.; Mutjé, P. The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: The relevance of enzymatic hydrolysis. Cellulose 2016, 23, 1433–1445. [Google Scholar] [CrossRef]
- Hu, J.; Tian, D.; Renneckar, S.; Saddler, J.N. Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Pohlmann, B.C.; Calado, V.; Bojorge, N.; Pereira, N., Jr. Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Eng. Life Sci. 2019, 19, 279–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, M.K.; Bhat, S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 1997, 15, 583–620. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Pignon, F.; Belgacem, M.N. Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J. Mater. Sci. 2015, 50, 531–541. [Google Scholar] [CrossRef]
- Ek, M.; Gellerstedt, G.; Henriksson, G. (Eds.) Wood Chemistry and Biotechnology, 1st ed.; Walter de Gruyter: Berlin, Germany, 2009; Volume 1, p. 247. [Google Scholar]
- Henriksson, M.; Henriksson, G.; Berglund, L.A.; Lindström, T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 2007, 43, 3434–3441. [Google Scholar] [CrossRef]
- Karim, Z.; Afrin, S.; Husain, Q.; Danish, R. Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit. Rev. Biotechnol. 2017, 37, 355–370. [Google Scholar] [CrossRef]
- Albornoz-Palma, G.; Betancourt, F.; Mendonça, R.T.; Chinga-Carrasco, G.; Pereira, M. Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydr. Polym. 2020, 230, 115588. [Google Scholar] [CrossRef]
- Andrade, A.; Henríquez-Gallegos, S.; Albornoz-Palma, G.; Pereira, M. Effect of the chemical and structural characteristics of pulps of Eucalyptus and Pinus on the deconstruction of the cell wall during the production of cellulose nanofibrils. Cellulose 2021, 28, 1–13. [Google Scholar] [CrossRef]
- Mendonça, R.T.; Jara, J.F.; Gonzalez, V.; Elissetche, J.P.; Freer, J. Evaluation of white root fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J. Ind. Microbiol. Biotechnol. 2008, 35, 1323. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zeng, Z.; Cheng, Z.; Wang, Y.; Wang, X.; Wang, B.; Gao, W. Cellulose nanofibrils manufactured by various methods with application as paper strength additives. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Ferraz, A.; Baeza, J.; Rodriguez, J.; Freer, J. Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresour. Technol. 2000, 74, 201–212. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sain, M.; Kortschot, M. Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 2006, 60, 53–58. [Google Scholar] [CrossRef]
- Hinestroza, J.; Netravali, A.N. Cellulose Based Composites: New Green Nanomaterials, 1st ed.; John Wiley & Sons: Weinheim, Germany, 2014; p. 16. [Google Scholar]
- Carrillo-Varela, I.; Retamal, R.; Pereira, M.; Mendonça, R.T. Structure and reactivity of cellulose from bleached kraft pulps of different Eucalyptus species upgraded to dissolving pulp. Cellulose 2019, 26, 5731–5744. [Google Scholar] [CrossRef]
- Taheri, H.; Samyn, P. Effect of homogenization (microfluidization) process parameters in mechanical pro- duction of micro and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 2016, 23, 1221–1238. [Google Scholar] [CrossRef]
- Zimmermann, T.; Bordeanu, N.; Strub, E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 2010, 79, 1086–1093. [Google Scholar] [CrossRef]
Pulp | Sample | Solubilized Compounds | Solid Carbohydrate Yield (%) | |
---|---|---|---|---|
Cellulose (% Initial Cellulose) | Xylan (% Initial Xylan) | |||
Eucalyptus | P0 | 1.9 ± 0.1 | 1.5% ± 0.3 | 96.6 ± 0.4 |
P0.025 | 3.1 ± 0.1 | 3.4% ± 0.2 | 93.5 ± 0.2 | |
P0.050 | 3.6 ± 0.2 | 3.2% ± 0.2 | 93.2 ± 0.3 | |
P0.075 | 4.3 ± 0.1 | 3.2% ± 0.2 | 92.5 ± 0.1 | |
P0.1 | 4.6 ± 0.1 | 3.1% ± 0.1 | 92.3 ± 0.2 |
Length (μm) | Width (nm) | Aspect Ratio | Transmittance (%) | Degree of Polymerization | |
---|---|---|---|---|---|
CNF0 | 8.5 ± 0.1 | 32.7 ± 0.9 | 260.0 | 73.6 | 447 |
CNF0.025 | 7.4 ± 0.3 | 26.9 ± 2.1 | 275.0 | 74.1 | 400 |
CNF0.050 | 7.1 ± 0.2 | 22.9 ± 0.6 | 310.9 | 77.1 | 362 |
CNF0.075 | 6.1 ± 0.2 | 21.8 ± 1.6 | 278.9 | 78.5 | 334 |
CNF0.1 | 5.7 ± 0.1 | 21.1 ± 1.1 | 271.5 | 85.9 | 278 |
Sample | Degree of Polymerization | Variation 1 | Variation 2 |
---|---|---|---|
P | 1438 | --- | |
PR | 1231 | −14% | |
PE | 916 | −36% | |
P0 | 760 | −47% | |
P0.025 | 649 | −55% | |
P0.05 | 601 | −58% | |
P0.075 | 529 | −63% | |
P0.1 | 497 | −65% | |
CNF0 | 447 | −69% | −41% |
CNF0.025 | 400 | −72% | −38% |
CNF0.050 | 362 | −75% | −40% |
CNF0.075 | 334 | −77% | −37% |
CNF0.100 | 278 | −81% | −44% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henríquez-Gallegos, S.; Albornoz-Palma, G.; Andrade, A.; Soto, C.; Pereira, M. Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils. Polymers 2021, 13, 3238. https://doi.org/10.3390/polym13193238
Henríquez-Gallegos S, Albornoz-Palma G, Andrade A, Soto C, Pereira M. Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils. Polymers. 2021; 13(19):3238. https://doi.org/10.3390/polym13193238
Chicago/Turabian StyleHenríquez-Gallegos, Sergio, Gregory Albornoz-Palma, Andrea Andrade, Carolina Soto, and Miguel Pereira. 2021. "Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils" Polymers 13, no. 19: 3238. https://doi.org/10.3390/polym13193238
APA StyleHenríquez-Gallegos, S., Albornoz-Palma, G., Andrade, A., Soto, C., & Pereira, M. (2021). Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils. Polymers, 13(19), 3238. https://doi.org/10.3390/polym13193238