An Electrospun Porous CuBi2O4 Nanofiber Photocathode for Efficient Solar Water Splitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Porous CuBi2O4/Pt Nanofiber Film
2.3. Physical Characterization
3. Results
3.1. Morphology and Structure of Nanofibers
3.2. Photoelectrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Teets, T.; Nocera, D. Solar energy supply and storage for the legacy and non legacy worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 1–13. [Google Scholar] [CrossRef]
- Yao, T.; An, X.; Han, H.; Chen, J.Q.; Li, C. Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 2018, 8, 1800210–1800237. [Google Scholar] [CrossRef]
- Xu, P.; Mccool, N.S.; Mallouk, T.E. Water splitting dye-sensitized solar cells. nanotoday 2017, 14, 42–58. [Google Scholar] [CrossRef]
- Jiang, C.; Moniz, S.J.A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting—Materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, J.S. Solar water splitting: Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 2019, 31, 1806938–1806973. [Google Scholar] [CrossRef]
- Wang, D.; Chang, G.; Zhang, Y.; Jie, C.; Yang, J.; Shao, S.; Wang, L.; Fan, C.; Wang, L. Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting. Nanoscale 2016, 8, 12697–12701. [Google Scholar] [CrossRef]
- Pang, H.; Zhao, G.; Liu, G.; Zhang, H.; Hai, X.; Wang, S.; Song, H.; Ye, J. Interfacing photosynthetic membrane protein with mesoporous WO3 photoelectrode for solar water oxidation. Small 2018, 14, 1800104–1800114. [Google Scholar] [CrossRef] [PubMed]
- Bagal, I.V.; Chodankar, N.R.; Hassan, M.A.; Waseem, A.; Johar, M.A.; Kim, D.H.; Ryu, S.W. Cu2O as an emerging photocathode for solar water splitting—A status review. Int. J. Hydrogen Energy 2019, 44, 21351–21378. [Google Scholar] [CrossRef]
- Guo, X.; Diao, P.; Xu, D.; Huang, S.; Yang, Y.; Jin, T.; Wu, Q.; Xiang, M.; Zhang, M. CuO/Pd composite photocathodes for photoelectrochemical hydrogen evolution reaction. Int. J. Hydrogen Energy 2014, 39, 7686–7696. [Google Scholar] [CrossRef]
- Li, C.; He, J.; Xiao, Y.; Delaunay, J.J. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy Environ. Sci. 2020, 13, 3269–3306. [Google Scholar] [CrossRef]
- Sharma, G.; Zhao, Z.; Sarker, P.; Nail, B.A.; Osterloh, F. Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals. J. Mater. Chem. A 2016, 4, 2936–2942. [Google Scholar] [CrossRef]
- Berglund, S.P.; Abdi, F.F.; Bogdanoff, P.; Chemseddine, A.; Friedrich, D.; Roel, V.D.K. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem. Mater. 2016, 28, 4231–4242. [Google Scholar] [CrossRef]
- Hahn, N.T.; Holmberg, V.C.; Korgel, B.A.; Mullins, C.B. Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes. J. Phys. Chem. C 2012, 116, 6459–6466. [Google Scholar] [CrossRef]
- Cao, D.; Nasori, N.; Wang, Z.; Yan, M.; Yong, L. P-type CuBi2O4: An easily accessible photocathodic material for high-efficient water splitting. J. Mater. Chem. A 2016, 4, 8995–9001. [Google Scholar] [CrossRef]
- Yang, J.; Du, C.; Wen, Y.; Zhang, Z.; Cho, K.; Chen, R.; Shan, B. Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination. Int. J. Hydrogen Energy 2018, 43, 9549–9557. [Google Scholar] [CrossRef]
- Abdulkarem, A.M.; Li, J.; Aref, A.A.; Lu, R.; Elssfah, E.M.; Hui, W.; Ge, Y.; Ying, Y. CuBi2O4 single crystal nanorods prepared by hydrothermal method: Growth mechanism and optical properties. Mater. Res. Bull. 2011, 46, 1443–1450. [Google Scholar] [CrossRef]
- Wang, F.; Septina, W.; Chemseddine, A.; Abdi, F.F.; Friedrich, D.; Bogdanoff, P.; Krol, R.V.D.; Tilley, D.; Berglund, S.P. Gradient self-doped CuBi2O4 with highly improved charge separation efficiency. J. Am. Chem. Soc. 2017, 139, 15094–15103. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Hill, J.C.; Park, Y.; Choi, K.S. Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes. J. High Energy Phys. 2016, 28, 4331–4340. [Google Scholar] [CrossRef]
- Oh, W.D.; Lua, S.K.; Dong, Z.; Lim, T.T. A novel three-dimensional spherical CuBi2O4 consisting of nanocolumn arrays with persulfate and peroxymonosulfate activation functionalities for 1H-benzotriazole removal. Nanoscale 2015, 7, 8149–8158. [Google Scholar] [CrossRef]
- Li, J.; Griep, M.; Choi, Y.S.; Chu, D. Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode. Chem. Commun. 2018, 54, 3331–3334. [Google Scholar] [CrossRef]
- Xu, N.; Li, F.; Gao, L.; Hu, H.; Hu, Y.; Long, X.; Ma, J.; Jin, J.N. Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 2018, 6, 7257–7264. [Google Scholar] [CrossRef]
- Wang, F.; Chemseddine, A.; Abdi, F.F.; Krol, R.; Berglund, S.P. Spray pyrolysis of CuBi2O4 photocathodes: Improved solution chemistry for highly homogeneous thin films. J. Mater. Chem. A 2017, 5, 12838–12847. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, C.; Reisner, E. Photoelectrochemical reduction of aqueous protons with a CuO/CuBi2O4 heterojunction under visible light irradiation. Phys. Chem. Chem. Phys. 2014, 16, 22462–22465. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jian, J.; Li, F.; Liu, W.; Jia, L.; Wang, H. Porous CuBi2O4 photocathodes with rationally engineered morphology and composition towards high-efficiency photoelectrochemical performance. J. Mater. Chem. 2019, 7, 21997–22004. [Google Scholar] [CrossRef]
- Patil, R.; Kelkar, S.; Naphade, R.; Ogale, S. Low temperature grown CuBi2O4 with flower morphology and its composite with CuO nanosheets for photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2, 3661–3668. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, J.; Fan, X.; He, J.; Li, Y. surface engineering of nanomaterials for photo-electrochemical water splitting. Small 2019, 15, 1803746–1803766. [Google Scholar] [CrossRef]
- Reddy, C.V.; Reddy, K.R.; Shetti, N.P.; Shim, J.; Aminabhavi, T.M. Dionysiou D.D. Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—A review. Int. J. Hydrogen Energy 2020, 45, 18331–18347. [Google Scholar] [CrossRef]
- Kumar, P.S.; Sundaramurthy, J.; Subramanian, S.; Babu, V.J.; Singh, G.; Allakhverdiev, S.I.; Ramarkrishna, S. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ. Sci. 2014, 7, 3192–3222. [Google Scholar] [CrossRef]
- Joly, D.; Jung, J.W.; Kim, I.D. Demadrille, Electrospun materials for solar energy conversion: Innovations and trends. J. Mater. Chem. C 2016, 4, 10173–10197. [Google Scholar] [CrossRef]
- Hildebrandt, N.C.; Soldat, J.; Marschall, R. Layered perovskite nanofibers via electrospinning for overall water splitting. Small 2015, 11, 2051–2057. [Google Scholar] [CrossRef]
- Jo, H.S.; Kim, M.W.; Joshi, B.; Samuel, E.; Yoon, H.; Swihart, M.T.; Yoon, S. Ni-core CuO-shell fibers produced by electrospinning and electroplating as efficient photocathode materials for solar water splitting. Nanoscale 2018, 10, 9720–9728. [Google Scholar] [CrossRef]
- Hu, G.; Hu, C.; Zhu, Z.; Lei, Z.; Qiang, W.; Zhang, H.L. Construction of Au/CuO/Co3O4 tri-component heterojunction nanotubes for enhanced photocatalytic oxygen evolution under visible light irradiation. ACS Sustain. Chem. Eng. 2018, 6, 8801–8808. [Google Scholar]
- Yuan, X.; Sun, X.; Zhou, H.; Zeng, S.; Liu, D. Free-standing electrospun W-doped BiVO4 porous nanotubes for the efficient photoelectrochemical water oxidation. Front. Chem. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yang, H.; Wang, W.P.; Zhang, H.M.; Li, R.S.; Wang, X.X.; Yu, R.C. A promising supercapacitor electrode material of CuBi2O4 hierarchical microspheres synthesized via a coprecipitation route. J. Alloys Compd. 2016, 684, 707–713. [Google Scholar] [CrossRef]
- Kim, H.; Bae, S.; Jeon, D.; Ryu, J. Fully solution-processable Cu2O–BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chem. 2018, 20, 3732–3742. [Google Scholar] [CrossRef]
- Pulipaka, S.; Boni, N.; Ummethala, G.; Meduri, P. CuO/CuBi2O4 heterojunction photocathode: High stability and current densities for solar water splitting. J. Catal. 2020, 387, 17–27. [Google Scholar] [CrossRef]
- Yu, J.; Qi, L.; Jaroniec, M. Hydrogen Production by Photocatalytic water splitting over Pt_TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 2010, 114, 13118–13125. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Liu, Y.; Yuan, H.; Liu, B.; Guo, T.; Zhou, H.; Li, X. An Electrospun Porous CuBi2O4 Nanofiber Photocathode for Efficient Solar Water Splitting. Polymers 2021, 13, 3341. https://doi.org/10.3390/polym13193341
Yuan X, Liu Y, Yuan H, Liu B, Guo T, Zhou H, Li X. An Electrospun Porous CuBi2O4 Nanofiber Photocathode for Efficient Solar Water Splitting. Polymers. 2021; 13(19):3341. https://doi.org/10.3390/polym13193341
Chicago/Turabian StyleYuan, Xiuhua, Yeling Liu, Hui Yuan, Bingxin Liu, Tianyu Guo, Huawei Zhou, and Xia Li. 2021. "An Electrospun Porous CuBi2O4 Nanofiber Photocathode for Efficient Solar Water Splitting" Polymers 13, no. 19: 3341. https://doi.org/10.3390/polym13193341
APA StyleYuan, X., Liu, Y., Yuan, H., Liu, B., Guo, T., Zhou, H., & Li, X. (2021). An Electrospun Porous CuBi2O4 Nanofiber Photocathode for Efficient Solar Water Splitting. Polymers, 13(19), 3341. https://doi.org/10.3390/polym13193341