Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review
Abstract
:1. Introduction
2. Electrospinning
2.1. Initial Development History of Electrospinning
2.2. Working Process and Principle of Electrospinning
2.3. Influencing Factors of Electrospinning
2.3.1. System Parameters
2.3.2. Process Parameters
2.3.3. Environmental Parameters
2.4. Process Type of Electrospinning Technology
3. Electrospun Functional Fiber Membrane for Antibiotic Removal
3.1. Preparation Technology of Electrospun Functional Fiber Membrane
3.2. Application of Electrospun Functional Fiber Membrane for Antibiotic Removal
3.2.1. Adsorption
3.2.2. Photocatalysis
3.2.3. Biodegradation
4. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PVDF | Polyvinylidene fluoride |
HFIP | 1,1,1,3,3,3-hexafluoro-2-propanol |
PCL | Poly caprolactone |
PVP | Polyvinylpyrrolidone |
DMF | N, N-dimethylformamide |
MC | Methylene chloride |
PI | Polyimide |
NMP | N-methyl-2-pyrrolidone |
DMAc | N, N-dimethylacetamide |
DMSO | Dimethyl sulfoxide |
CA | Cellulose acetate |
PEO | Polyethane oxide |
PS | Polystyrene |
PDA | Polydopamine |
PAN | Polyacrylonitrile |
PES | Polyethersulfone |
DTDPA | 3,3′-dithiodipropionic acid |
CDI | 1,1-carbonyldiimidazole |
AmTG | Ammonium thioglycolate aqueous solution |
PET | Polyethylene terephthalate |
SQX | Sulfaquinoxaline |
CNCT | g-C3N4@Co-TiO2 |
PLA | Polylactic acid |
AC | Ampicillin |
PSF | Polysulfone |
TC | Tetracycline |
SD | Sulfadiazine |
PEG | Polyethylene glycol |
PVA | Polyvinyl alcohol |
ZVI NPs | Zero-valent iron nanoparticles |
STZ | Sulfathiazole |
CIP | Ciprofloxacin |
LEV | Levofloxacin |
2,4-DCP | 2,4-dichlorophenol |
MB | Methylene blue |
ZIF-8 | Zeolitic imidazolate framework-8 |
MMT | Montmorillonite |
CAP | Chloramphenicol |
GO | Graphene oxide |
β-CD | β-cyclodextrin |
CS | Chitosan |
SMX | Sulfamethoxazole |
MTZ | Metronidazole |
ERY | Erythromycin |
PVB | Polyvinyl butyral |
NFC | Norfloxacin |
OTC | Oxytetracycline |
DAS | Dialdehyde starch |
GMA-S-SH | Glycidyl methacrylate-S-SH |
PMMA | Poly(methyl methacrylate) |
EDC | N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide |
NHS | N-hydroxysuccinimide |
PLGA | Poly(lactic-co-glycolic acid) |
References
- Moradi, M.; Elahinia, A.; Vasseghian, Y.; Dragoi, E.N.; Omidi, F.; Mousavi Khaneghah, A. A review on pollutants removal by Sono-photo -Fenton processes. J. Environ. Chem. Eng. 2020, 8, 104330. [Google Scholar] [CrossRef]
- Karagiannis, I.C.; Soldatos, P.G. Water desalination cost literature: Review and assessment. Desalination 2008, 223, 448–456. [Google Scholar] [CrossRef]
- Jang, W.; Yun, J.; Seo, Y.; Byun, H.; Hou, J.; Kim, J.H. Mixed dye removal efficiency of electrospun polyacrylonitrile-graphene oxide composite membranes. Polymers 2020, 12, 2009. [Google Scholar] [CrossRef] [PubMed]
- Othmani, B.; Gamelas, J.A.F.; Rasteiro, M.G.; Khadhraoui, M. Characterization of two cactus formulation-based flocculants and investigation on their flocculating ability for cationic and anionic dyes removal. Polymers 2020, 12, 1964. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Van, M.; Mai, O.L.T.; Pham Do, C.; Lam Thi, H.; Pham Manh, C.; Nguyen Manh, H.; Pham Thi, D.; Do Danh, B. Fe-doped g-C3N4: High-performance photocatalysts in rhodamine B decomposition. Polymers 2020, 12, 1963. [Google Scholar] [CrossRef] [PubMed]
- Azizkhani, S.; Mahmoudi, E.; Abdullah, N.; Ismail, M.H.S.; Mohammad, A.W.; Hussain, S.A. Synthesis and characterisation of graphene oxide-silica-chitosan for eliminating the Pb(II) from aqueous solution. Polymers 2020, 12, 1922. [Google Scholar] [CrossRef]
- Chang, C.J.; Chao, P.Y.; Chou, C.Y.; Chen, Y.J.; Huang, C.F. Polymer/BiOBr-modified gauze as a dual-functional membrane for heavy metal removal and photocatalytic dye decolorization. Polymers 2020, 12, 2082. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Q.; Wang, S.; Man, R. Preparation of a novel polystyrene-poly(hydroxamic acid) copolymer and its adsorption properties for rare earth metal ions. Polymers 2020, 12, 1905. [Google Scholar] [CrossRef]
- Song, J.; Sun, G.; Yu, J.; Si, Y.; Ding, B. Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification. Ceram. Int. 2020, 46, 468–475. [Google Scholar] [CrossRef]
- Jatoi, A.W.; Kim, I.S.; Ni, Q.Q. Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr. Polym. 2019, 207, 640–649. [Google Scholar] [CrossRef]
- Sadasivam, R.; Sankarakuttalam, C.; Gopinath, P. Hierarchical architecture of electrospun hybrid PAN/Ag-rGO/Fe3O4 composite nanofibrous mat for antibacterial applications. Chem. Select. 2019, 4, 5044–5054. [Google Scholar]
- Bobirică, C.; Bobirică, L.; Râpă, M.; Matei, E.; Predescu, A.M.; Orbeci, C. Photocatalytic degradation of ampicillin using PLA/TiO2 hybrid nanofibers coated on different types of fiberglass. Water 2020, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Zhou, M.; Luo, P.; Shang, J.; Wang, P.; Lyu, L. Deposition of MOFs on polydopamine-modified electrospun polyvinyl alcohol/silica nanofibers mats for chloramphenicol adsorption in water. Nano 2020, 15, 2050046. [Google Scholar] [CrossRef]
- Chen, H.; Huang, M.; Wang, Z.; Gao, P.; Cai, T.; Song, J.; Zhang, Y.; Meng, L. Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane. Chem. Eng. J. 2020, 382, 123052. [Google Scholar] [CrossRef]
- Zeng, Z.; Ye, S.; Wu, H.; Xiao, R.; Zeng, G.; Liang, J.; Zhang, C.; Yu, J.; Fang, Y.; Song, B. Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci. Total Environ. 2019, 648, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Dolic, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef] [PubMed]
- Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Sci. Total Environ. 2018, 618, 409–418. [Google Scholar] [CrossRef]
- Gothwal, R.; Shashidhar, T. Antibiotic pollution in the environment: A review. Clean Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Karkman, A.; Parnanen, K.; Larsson, D.G.J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 2019, 10, 80. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.; Guo, Y.; Rhodes, G.; Yeom, J.; Li, H.; Zhang, W. Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms. Environ. Int. 2019, 132, 105105. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.Y.; Ahmed, I.S.; Hendy, H.S. A facile one-pot hydrothermal synthesis of hematite (α-Fe2O3) nanostructures and cephalexin antibiotic sorptive removal from polluted aqueous media. J. Mol. Liq. 2018, 271, 844–856. [Google Scholar] [CrossRef]
- Yan, W.; Xiao, Y.; Yan, W.; Ding, R.; Wang, S.; Zhao, F. The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review. Chem. Eng. J. 2019, 358, 1421–1437. [Google Scholar] [CrossRef]
- Yang, X.L.; Xu, J.Y.; Song, H.L.; Wang, X.; Li, T. Enhanced removal of antibiotics in wastewater by membrane bioreactor with addition of rice straw. Int. Biodeterior. Biodegrad. 2020, 148, 104868. [Google Scholar] [CrossRef]
- Daughton, C.G. Non-regulated water contaminants: Emerging research. Environ. Impact Assess. Rev. 2004, 24, 711–732. [Google Scholar] [CrossRef]
- Watts, C.D.; Crathorne, B.; Fielding, M.; Killops, S.D. Nonvolatile organic compounds in treated waters. Environ. Health Perspect. 1982, 46, 87–99. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Fick, J.; Lindberg, R.H.; Tysklind, M.; Larsson, D.G. Predicted critical environmental concentrations for 500 pharmaceuticals. Regul. Toxicol. Pharmacol. 2010, 58, 516–523. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.H.; Tian, M.; Wang, R.; Fane, A.G. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 2018, 77, 69–94. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Wang, Y.; Zhang, Q.; Ma, W.; Huang, C. Electrospun nanofiber membranes for wastewater treatment applications. Sep. Purif. Technol. 2020, 250, 117116. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, S.; Bai, Y.; Du, Y.; Yu, D.G. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr. Polym. 2020, 243, 116477. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.S.; Yang, J.K.; Zheng, X.L.; Wang, M.L.; Liu, Y.N.; Yu, D.G. A nanofiber-based drug depot with high drug loading for sustained release. Int. J. Pharm. 2020, 583, 119397. [Google Scholar] [CrossRef] [PubMed]
- Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications. Polym. Adv. Technol. 2020, 31, 1449–1462. [Google Scholar] [CrossRef]
- Chen, H.; Huang, M.; Liu, Y.; Meng, L.; Ma, M. Functionalized electrospun nanofiber membranes for water treatment: A review. Sci. Total Environ. 2020, 739, 139944. [Google Scholar] [CrossRef]
- Gilbert, W.D.M. De Magnete; Courier: New York, NY, USA, 1958. [Google Scholar]
- Gray, S.A. Letter concerning the electricity of water, from Mr. Stephen Gray to Cromwell Mortimer. Philos. Trans. R. Soc. Lond. 1731, 37, 227–260. [Google Scholar]
- Nollet, J.A.X. Part of a letter from Abbè Nollet, of the Royal Academy of Science at Paris, and FRS to Martin Folkes Esq; president of the same, concerning electricity. Philos. Trans. R. Soc. Lond. 1748, 45, 187–194. [Google Scholar]
- Rayleigh, L.X. On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag. 1882, 14, 184–186. [Google Scholar] [CrossRef] [Green Version]
- Cooley, J.F. Apparatus for Electrically Dispersing Fluids. U.S. Patent 692,631, 4 February 1902. [Google Scholar]
- Morton, W.J. Method of Dispersing Fluid. U.S. Patent 705,691, 29 July 1902. [Google Scholar]
- Bhagure, S.S.; Rao, A.R. A review: Electrospinning and electrospinning nanofiber technology, process & application. Int. J. Innov. Sci. Res. Technol. 2020, 5. [Google Scholar] [CrossRef]
- Taylor, G.I. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. Ser. A 1964, 280, 383–397. [Google Scholar]
- Taylor, G. The force exerted by an electric field on a long cylindrical conductor. Proc. R. Soc. Lond. Ser. A 1966, 291, 145–158. [Google Scholar]
- Taylor, G. Electrically driven jets. Proc. R. Soc. Lond. Ser. A 1969, 313, 453–475. [Google Scholar]
- Huang, Z.X.; Wu, J.W.; Wong, S.C.; Qu, J.P.; Srivatsan, T.S. The technique of electrospinning for manufacturing core-shell nanofibers. Mater. Manuf. Process. 2017, 33, 202–219. [Google Scholar] [CrossRef]
- Tucker, N.; Stanger, J.J.; Staiger, M.P.; Razzaq, H.; Hofman, K. The history of the science and technology of electrospinning from 1600 to 1995. J. Eng. Fibers Fabr. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.X.; Hou, S.C.; Chen, X.W.; Yu, D.G.; Wang, L.; Li, X.Y.; Williams, G.R. Energy-saving electrospinning with a concentric teflon-core rod spinneret to create medicated nanofibers. Polymers 2020, 12, 2421. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Yu, D.G.; Li, X.Y.; Williams, G.R. The development and bio-applications of multifluid electrospinning. Mater. Highlights 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Yeo, L.Y.; Friend, J.R. Electrospinning carbon nanotube polymer composite nanofibers. J. Exp. Nanosci. 2006, 1, 177–209. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wen, H.F.; Yu, D.G.; Yang, Y.Y.; Zhang, D.F. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater. Des. 2018, 143, 248–255. [Google Scholar]
- Huang, W.D.; Xu, X.; Wang, H.L.; Huang, J.X.; Zuo, X.H.; Lu, X.J.; Liu, X.L.; Yu, D.G. Electrosprayed ultra-thin coating of ethyl cellulose on drug nanoparticles for improved sustained release. Nanomaterials 2020, 10, 1758. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.L.; Wan, X.; Zhou, H.L.; Zhang, H.; Yu, D.G. Dual-stage release of ketoprofen from electrosprayed core-shell hybrid polyvinyl pyrrolidone/ethyl cellolose nanoparticles. Mater. Highlights 2020, 1, 14–21. [Google Scholar]
- Gao, J.; Song, X.; Huang, X.; Wang, L.; Li, B.; Xue, H. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation. Appl. Surf. Sci. 2018, 439, 394–404. [Google Scholar] [CrossRef]
- Kumar, P.S.; Sundaramurthy, J.; Sundarrajan, S.; Babu, V.J.; Singh, G.; Allakhverdiev, S.I.; Ramakrishna, S. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ. Sci. 2014, 7, 3192–3222. [Google Scholar] [CrossRef]
- Wang, M.L.; Hai, T.; Feng, Z.; Yu, D.G.; Yang, Y.; Annie Bligh, S. The relationships between the working fluids, process characteristics and products from the modified coaxial electrospinning of zein. Polymers 2019, 11, 1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, H.M.; Klingner, A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym. Test. 2020, 90, 106647. [Google Scholar] [CrossRef]
- Zaarour, B.; Zhu, L.; Jin, X. Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Mater. 2019, 17, 181–189. [Google Scholar] [CrossRef]
- Ghorani, B.; Tucker, N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 2015, 51, 227–240. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.J.; Yu, D.G.; Williams, G.R.; Yang, J.H.; Wang, X. Influence of the drug distribution in electrospun gliadin fibers on drug-release behavior. Eur. J. Pharm. Sci. 2017, 106, 422–430. [Google Scholar] [CrossRef]
- Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C 2009, 29, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Topuz, F.; Satilmis, B.; Uyar, T. Electrospinning of uniform nanofibers of polymers of intrinsic microporosity (PIM-1): The influence of solution conductivity and relative humidity. Polymer 2019, 178, 121610. [Google Scholar] [CrossRef]
- Luo, C.J.; Stride, E.; Edirisinghe, M. Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 2012, 45, 4669–4680. [Google Scholar] [CrossRef]
- Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation materials for advanced applications. Mater. Sci. Eng. B 2017, 217, 36–48. [Google Scholar] [CrossRef]
- Boddula, R.; Ahamed, M.I.; Asiri, A.M. Electrospun Materials and Their Allied Applications; John, Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Yang, Q.; Li, Z.; Hong, Y.; Zhao, Y.; Qiu, S.; Wang, C.; Wei, Y. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 3721–3726. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C. One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chisca, S.; Barzic, A.I.; Sava, I.; Olaru, N.; Bruma, M. Morphological and rheological insights on polyimide chain entanglements for electrospinning produced fibers. J. Phys. Chem. B 2012, 116, 9082–9088. [Google Scholar] [CrossRef]
- Dodero, A.; Brunengo, E.; Alloisio, M.; Sionkowska, A.; Vicini, S.; Castellano, M. Chitosan-based electrospun membranes: Effects of solution viscosity, coagulant and crosslinker. Carbohydr. Polym. 2020, 235, 115976. [Google Scholar] [CrossRef]
- Lasprilla-Botero, J.; Álvarez-Láinez, M.; Lagaron, J.M. The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers. Mater. Today Commun. 2018, 14, 1–9. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Lee, H.; Nishino, M.; Sohn, D.; Lee, J.S.; Kim, I.S. Control of the morphology of cellulose acetate nanofibers via electrospinning. Cellulose 2018, 25, 2829–2837. [Google Scholar] [CrossRef]
- Najafi, S.J.; Nosraty, H.; Shokrieh, M.M.; Gharehaghaji, A.A.; Bahrami, S.H. The effect of electrospinning parameters on the morphology of glass nanofibers. J. Text. Inst. 2020, 111, 941–949. [Google Scholar] [CrossRef]
- Topuz, F.; Uyar, T. Electrospinning of cyclodextrin nanofibers: The effect of process parameters. J. Nanomater. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Vicente, A.C.B.; Medeiros, G.B.; do Carmo Vieira, D.; Garcia, F.P.; Nakamura, C.V.; Muniz, E.C.; Corradini, E. Influence of process variables on the yield and diameter of zein-poly(N‑isopropylacrylamide) fiber blends obtained by electrospinning. J. Mol. Liq. 2019, 292, 109971. [Google Scholar] [CrossRef]
- Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A.S.; Damerchely, R. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J. Eng. Fibers Fabr. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Someswararao, M.V.; Dubey, R.S.; Subbarao, P.S.V.; Singh, S. Electrospinning process parameters dependent investigation of TiO2 nanofibers. Results Phys. 2018, 11, 223–231. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, S.; Lu, W.; Wang, Y.; Zhang, P.; Yao, Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 2019, 9, 25712–25729. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Kara, Y.; Molnar, K. Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolut. Discov. 2019, 4, 7–11. [Google Scholar] [CrossRef]
- Huang, F.; Wei, Q.; Wang, J.; Cai, Y.; Huang, Y. Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. e-Polymers 2008, 8, 1758–1765. [Google Scholar] [CrossRef]
- Cui, Q.N.; Li, Y.; Liu, F.J. Effect of temperature on the morphology of bubble-electrospun nanofibers. Therm. Sci. 2014, 18, 1707–1709. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Gimbun, J.; Ramakrishnan, P.; Ranganathan, B.; Reddy, S.M.M.; Shanmugam, G. Effect of solution properties and operating parameters on needleless electrospinning of poly(ethylene oxide) nanofibers loaded with bovine serum albumin. Curr. Drug Deliv. 2019, 16, 913–922. [Google Scholar] [CrossRef]
- Ding, Y.; Dou, C.; Chang, S.; Xie, Z.; Yu, D.G.; Liu, Y.; Shao, J. Core–shell eudragit S100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers 2020, 12, 2034. [Google Scholar] [CrossRef]
- Wang, M.L.; Li, D.; Li, J.; Li, S.Y.; Chen, Z.; Yu, D.G.; Liu, Z.P.; Guo, J.Z.H. Electrospun janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater. Des. 2020, 196, 109075. [Google Scholar] [CrossRef]
- Loscertales, I.G. Micro/nano encapsulation via electrified coaxial liquid jets. Science 2002, 295, 1695–1698. [Google Scholar] [CrossRef]
- Yoon, J.; Yang, H.S.; Lee, B.S.; Yu, W.R. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Adv. Mater. 2018, 30, e1704765. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.G.; Branford-White, C.J.; Chatterton, N.P.; White, K.; Zhu, L.M.; Shen, X.X.; Nie, W. Electrospinning of concentrated polymer solutions. Macromolecules 2010, 43, 10743–10746. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Yu, D.G.; Zhu, M.J.; Zhao, M.; Williams, G.R. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem. Eng. J. 2019, 356, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, W.; Yu, D.G.; Wang, G.; Williams, G.R.; Zhang, Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr. Polym. 2019, 203, 228–237. [Google Scholar] [CrossRef]
- Wang, M.L.; Hou, J.S.; Yu, D.G.; Li, S.Y.; Zhu, J.W.; Chen, Z.Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J. Alloys Compd. 2020, 846, 156471. [Google Scholar] [CrossRef]
- Wang, M.L.; Wang, K.; Yang, Y.; Liu, Y.; Yu, D.G. Electrospun environment remediation nanofibers using unspinnable liquids as the sheath fluids: A review. Polymers 2020, 12, 103. [Google Scholar] [CrossRef] [Green Version]
- Aidana, Y.; Wang, Y.B.; Li, J.; Chang, S.Y.; Wang, K.; Yu, D.G. Fast dissolution electrospun medicated nanofibers for effective delivery of poorly water soluble drugs. Curr. Drug Deliv. 2021, 18, 2–21. [Google Scholar]
- Chang, S.; Wang, M.; Zhang, F.; Liu, Y.; Liu, X.; Yu, D.G.; Shen, H. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Mater. Des. 2020, 192, 108782. [Google Scholar] [CrossRef]
- Zhao, K.; Yang, Y.; Kang, S.X.; Yu, D.G. Solidifying essential balm into electrospun core-sheath nanofibers for prolonged release. Curr. Chin. Sci. 2021, 1, 122–131. [Google Scholar] [CrossRef]
- Bai, Y.F.; Wang, D.; Zhang, Z.; Pan, J.C.; Cui, Z.B.; Yu, D.G.; Annie Bligh, S.W. Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites. Polym. Test. 2020, 93, 106872. [Google Scholar] [CrossRef]
- Yu, D.G. Preface - bettering drug delivery knowledge from pharmaceutical techniques and excipients. Curr. Drug Deliv. 2021, 18, 2–3. [Google Scholar]
- Mofidfar, M.; Prausnitz, M.R. Electrospun transdermal patch for contraceptive hormone delivery. Curr. Drug Deliv. 2019, 16, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Padmakumar, S.; Menon, D. Nanofibrous polydioxanone depots for prolonged intraperitoneal paclitaxel delivery. Curr. Drug Deliv. 2019, 16, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, M.; Kikionis, S.; Siamidi, A.; Tragou, K.; Kapoti, S.; Ioannou, E.; Roussis, V.; Tsotinis, A. Fabrication and characterization of electrospun nanofibers for the modified release of the chronobiotic hormone melatonin. Curr. Drug Deliv. 2019, 16, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Nie, K.; Han, S.; Yang, J.; Sun, Q.; Wang, X.; Li, X.; Li, Q. Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering. Polymers 2020, 12, 1977. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.S. A review of recent advancements in electrospun anode materials to improve rechargeable lithium battery performance. Polymers 2020, 12, 2035. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cui, Z.; Li, D.; Yue, G.; Liu, J.; Ding, H.; Gao, S.; Zhao, Y.; Wang, N.; Zhao, Y. Hierarchically structured electrospinning nanofibers for catalysis and energy storage. Compos. Commun. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Mouro, C.; Fangueiro, R.; Gouveia, I.C. Preparation and characterization of electrospun double-layered nanocomposites membranes as a carrier for Centella asiatica (L.). Polymers 2020, 12, 2653. [Google Scholar] [CrossRef]
- Boschetto, F.; Ngoc Doan, H.; Phong Vo, P.; Zanocco, M.; Zhu, W.; Sakai, W.; Adachi, T.; Ohgitani, E.; Tsutsumi, N.; Mazda, O.; et al. Antibacterial and osteoconductive effects of chitosan/polyethylene oxide (PEO)/bioactive glass nanofibers for orthopedic applications. Appl. Sci. 2020, 10, 2360. [Google Scholar] [CrossRef] [Green Version]
- Che Othman, F.E.; Yusof, N.; González-Benito, J.; Fan, X.; Ismail, A.F. Electrospun composites made of reduced graphene oxide and polyacrylonitrile-based activated carbon nanofibers (rGO/ACNF) for enhanced CO2 adsorption. Polymers 2020, 12, 2117. [Google Scholar] [CrossRef]
- Che Othman, F.E.; Yusof, N.; Yub Harun, N.; Bilad, M.R.; Jaafar, J.; Aziz, F.; Wan Salleh, W.N.; Ismail, A.F. Novel activated carbon nanofibers composited with cost-effective graphene-based materials for enhanced adsorption performance toward methane. Polymers 2020, 12, 2064. [Google Scholar] [CrossRef] [PubMed]
- Kupka, V.; Dvorakova, E.; Manakhov, A.; Michlicek, M.; Petrus, J.; Vojtova, L.; Zajickova, L. Well-blended PCL/PEO electrospun nanofibers with functional properties enhanced by plasma processing. Polymers 2020, 12, 1403. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, J.; Lu, J.; Huang, J.; Zhang, F.; Hu, Y.; Liu, C.; An, R.; Miao, H.; Chen, Y.; et al. Preparation and properties of plant-oil-based epoxy acrylate-like resins for UV-curable coatings. Polymers 2020, 12, 2165. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Qu, R.; Chen, Y.; Cao, Y.; Zhang, W.; Lin, X.; Wei, Y.; Feng, L.; Jiang, L. In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. Nanoscale 2016, 8, 18558–18564. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, C.; He, A.; Yang, S.J.; Wu, G.P.; Darling, S.B.; Xu, Z.K. Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment. Adv. Funct. Mater. 2017, 27, 1700251. [Google Scholar] [CrossRef]
- Sikhwivhilu, K.; Moutloali, R.M. Functionalized PVDF membrane-immobilized Fe/Ni bimetallic nanoparticles for catalytic degradation of methyl orange dye: A comparative study. Mater. Today Proc. 2015, 2, 4070–4080. [Google Scholar] [CrossRef]
- Rojas-Lema, S.; Terol, J.; Fages, E.; Balart, R.; Quiles-Carrillo, L.; Prieto, C.; Torres-Giner, S. Microencapsulation of copper(II) sulfate in ionically cross-linked chitosan by spray drying for the development of irreversible moisture indicators in paper packaging. Polymers 2020, 12, 2039. [Google Scholar] [CrossRef]
- Zhao, S.; Ba, C.; Yao, Y.; Zheng, W.; Economy, J.; Wang, P. Removal of antibiotics using polyethylenimine cross-linked nanofiltration membranes: Relating membrane performance to surface charge characteristics. Chem. Eng. J. 2018, 335, 101–109. [Google Scholar] [CrossRef]
- Satilmis, B.; Uyar, T. Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system. Appl. Surf. Sci. 2018, 453, 220–229. [Google Scholar] [CrossRef]
- Wanjale, S.; Birajdar, M.; Jog, J.; Neppalli, R.; Causin, V.; Karger-Kocsis, J.; Lee, J.; Panzade, P. Surface tailored PS/TiO2 composite nanofiber membrane for copper removal from water. J. Colloid Interface Sci. 2016, 469, 31–37. [Google Scholar] [CrossRef]
- Sagitha, P.; Reshmi, C.R.; Sundaran, S.P.; Sujith, A. Recent advances in post-modification strategies of polymeric electrospun membranes. Eur. Polym. J. 2018, 105, 227–249. [Google Scholar] [CrossRef]
- Mulyati, S.; Muchtar, S.; Arahman, N.; Syamsuddin, Y.; Mat Nawi, N.I.; Yub Harun, N.; Bilad, M.R.; Firdaus, Y.; Takagi, R.; Matsuyama, H. Two-step dopamine-to-polydopamine modification of polyethersulfone ultrafiltration membrane for enhancing anti-fouling and ultraviolet resistant properties. Polymers 2020, 12, 2051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; He, Y.; Ma, L.; Chen, J.; Fan, Y.; Zhang, S.; Shi, H.; Li, Z.; Luo, P. Hierarchical stabilized PAN/β-FeOOH nanofibrous membrane for efficient water purification with excellent anti-fouling performance and robust solvent-resistance. ACS Appl. Mater. Interfaces 2019, 11, 34487–34496. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Lin, R.; Chen, W.; Li, Z.; Wu, K.; Guan, B.; Jiao, Y.; Zhou, C. Polydopamine-assisted immobilization of L-serine onto PES electrospun fiber membrane for effective endotoxin removal. Compos. Commun. 2020, 20, 100365. [Google Scholar] [CrossRef]
- Pinto, D.; Amaro, A.M.; Bernardo, L. Experimental study on the surface properties of nanoalumina-filled epoxy resin nanocomposites. Appl. Sci. 2020, 10, 733. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.B.; Liu, X.K.; Liu, P.; Chen, X.H.; Yu, D.G. Electrospun multiple-chamber nanostructure and its potential self-healing applications. Polymers 2020, 12, 2413. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Jeon, B.; Bae, J.H.; Kim, I.S.; Paeng, K.; Kim, M.; Lee, H. Thiol-based chemistry as versatile routes for the effective functionalization of cellulose nanofibers. Carbohydr. Polym. 2019, 226, 115259. [Google Scholar] [CrossRef]
- Yu, D.G.; Zhou, J.; Chatterton, N.P.; Li, Y.; Huang, J.; Wang, X. Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. Int. J. Nanomed. 2012, 7, 5725–5732. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Lu, W.; Wang, X.; Li, N.; Chen, X.; Zhu, Z.; Chen, W. Graphitic carbon nitride from burial to re-emergence on polyethylene terephthalate nanofibers as an easily recycled photocatalyst for degrading antibiotics under solar irradiation. ACS Appl. Mater. Interfaces 2016, 8, 25962–25970. [Google Scholar] [CrossRef]
- Song, J.; Wu, X.; Zhang, M.; Liu, C.; Yu, J.; Sun, G.; Yang, S.; Ding, B. Highly flexible, core-shell heterostructured, and visible-light-driven titania-based nanofibrous membranes for antibiotic removal and E. coil inactivation. Chem. Eng. J. 2020, 379, 122269. [Google Scholar] [CrossRef]
- Riaz, T.; Ahmad, A.; Saleemi, S.; Adrees, M.; Jamshed, F.; Hai, A.M.; Jamil, T. Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium(VI) removal. Carbohydr. Polym. 2016, 153, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Lu, W.; Zhu, Z.; Li, N.; Xu, T.; Wang, G.; Chen, W. Free channel formation around graphitic carbon nitride embedded in porous polyethylene terephthalate nanofibers with excellent reusability for eliminating antibiotics under solar irradiation. Ind. Eng. Chem. Res. 2017, 56, 11151–11160. [Google Scholar] [CrossRef]
- Chen, Y.P.; Yang, L.M.; Paul Chen, J.; Zheng, Y.M. Electrospun spongy zero-valent iron as excellent electro-Fenton catalyst for enhanced sulfathiazole removal by a combination of adsorption and electro-catalytic oxidation. J. Hazard. Mater. 2019, 371, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
- Liu, Q.; Zhong, L.B.; Zhao, Q.B.; Frear, C.; Zheng, Y.M. Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Appl. Mater. Interfaces 2015, 7, 14573–14583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ou, H.; Liu, H.; Ke, Y.; Zhang, W.; Liao, G.; Wang, D. Polyimide-based carbon nanofibers: A versatile adsorbent for highly efficient removals of chlorophenols, dyes and antibiotics. Colloids Surf. A 2018, 537, 92–101. [Google Scholar] [CrossRef]
- Chao, S.; Li, X.; Li, Y.; Wang, Y.; Wang, C. Preparation of polydopamine-modified zeolitic imidazolate framework-8 functionalized electrospun fibers for efficient removal of tetracycline. J. Colloid Interface Sci. 2019, 552, 506–516. [Google Scholar] [CrossRef]
- Acosta, R.; Fierro, V.; Martinez de Yuso, A.; Nabarlatz, D.; Celzard, A. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere 2016, 149, 168–176. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Sadegh, N. Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng. 2014, 1, 64–73. [Google Scholar] [CrossRef]
- Ahmed, M.J. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environ. Toxicol. Pharmacol. 2017, 50, 1–10. [Google Scholar] [CrossRef]
- Bangari, R.S.; Sinha, N. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution. J. Mol. Liq. 2019, 293, 111376. [Google Scholar] [CrossRef]
- Sayen, S.; Ortenbach-López, M.; Guillon, E. Sorptive removal of enrofloxacin antibiotic from aqueous solution using a ligno-cellulosic substrate from wheat bran. J. Environ. Chem. Eng. 2018, 6, 5820–5829. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Shi, C.; Guo, F.; He, C.; Cao, Z.; Hu, J.; Cui, C.; Liu, H. Induced-fit adsorption of diol-based porous organic polymers for tetracycline removal. Chemosphere 2018, 212, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, J.; Meng, Y.; Su, J.; Wang, X. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather. Sci. Total Environ. 2017, 603–604, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Lei, M.; Zhang, Q.; He, J.R.; Chen, T.; Liu, S.; Fu, S.H.; Li, T.T.; Liu, G.; Fei, P. Electrospun composite nanofiber mats of cellulose@organically modified montmorillonite for heavy metal ion removal: Design, characterization, evaluation of absorption performance. Compos. Part A 2017, 92, 10–16. [Google Scholar] [CrossRef]
- Nurhasanah, I.; Kadarisman; Gunawan, V.; Sutanto, H. Cerium oxide nanoparticles application for rapid adsorptive removal of tetracycline in water. J. Environ. Chem. Eng. 2020, 8, 103613. [Google Scholar] [CrossRef]
- Bassyouni, D.; Mohamed, M.; El-Ashtoukhy, E.S.; El-Latif, M.A.; Zaatout, A.; Hamad, H. Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb(II). Microchem. J. 2019, 149, 103998. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Q.; Lu, T.; Qi, W.; Zhang, H.; Wang, M.; Qi, Z.; Chen, W. Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: Comparison between tetracycline and ciprofloxacin. Ecotoxicol. Environ. Saf. 2020, 205, 111345. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.C.; Kao, D.Y.; Tran, T.T.V.; Juang, R.S. Adsorption removal of tetracycline from water using poly(vinylidene fluoride)/polyaniline-montmorillonite mixed matrix membranes. J. Taiwan Inst. Chem. Eng. 2020, 112, 259–270. [Google Scholar] [CrossRef]
- Mosaleheh, N.; Sarvi, M.N. Minimizing the residual antimicrobial activity of tetracycline after adsorption into the montmorillonite: Effect of organic modification. Environ. Res. 2020, 182, 109056. [Google Scholar] [CrossRef]
- Balarak, D.; Ganji, F.; Chandrika, K.; Haseeb, S. Montmorillonite nanoparticles effectiveness in removal of amoxicillin from water solutions. Int. J. Pharm. Investig. 2020, 10, 122–126. [Google Scholar] [CrossRef]
- Ramanayaka, S.; Sarkar, B.; Cooray, A.T.; Ok, Y.S.; Vithanage, M. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. J. Hazard. Mater. 2020, 384, 121301. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhao, S.; Jing, R.; Shao, Y.; Liu, X.; Lv, F.; Hu, X.; Zhang, Q.; Meng, Z.; Liu, A. Competitive adsorption of antibiotic tetracycline and ciprofloxacin on montmorillonite. Appl. Clay Sci. 2019, 180, 105175. [Google Scholar] [CrossRef]
- Das, S.; Barui, A.; Adak, A. Montmorillonite impregnated electrospun cellulose acetate nanofiber sorptive membrane for ciprofloxacin removal from wastewater. J. Water Process Eng. 2020, 37, 101497. [Google Scholar] [CrossRef]
- Kosmulski, M. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv. Colloid Interface Sci. 2016, 238, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Roca Jalil, M.E.; Baschini, M.; Sapag, K. Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Appl. Clay Sci. 2015, 114, 69–76. [Google Scholar] [CrossRef]
- Li, P.; Cheng, F.F.; Xiong, W.W.; Zhang, Q. New synthetic strategies to prepare metal–organic frameworks. Inorg. Chem. Front. 2018, 5, 2693–2708. [Google Scholar] [CrossRef]
- Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M.B.; Ji, S.W.; Jeon, B.H. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev. 2019, 380, 330–352. [Google Scholar] [CrossRef]
- Wu, G.; Ma, J.; Li, S.; Guan, J.; Jiang, B.; Wang, L.; Li, J.; Wang, X.; Chen, L. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J. Colloid Interface Sci. 2018, 528, 360–371. [Google Scholar] [CrossRef]
- Wu, R.; Bi, C.; Zhang, D.; Fan, C.; Wang, L.; Zhu, B.; Liu, W.; Li, N.; Zhang, X.; Fan, Y. Highly selective, sensitive and stable three-dimensional luminescent metal–organic framework for detecting and removing of the antibiotic in aqueous solution. Microchem. J. 2020, 159, 105349. [Google Scholar] [CrossRef]
- Yu, K.; Ahmed, I.; Won, D.I.; Lee, W.I.; Ahn, W.S. Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere 2020, 250, 126133. [Google Scholar] [CrossRef] [PubMed]
- Abazari, R.; Mahjoub, A.R.; Shariati, J. Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution. J. Hazard. Mater. 2019, 366, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, Y.; Huang, H.; Zhong, C. Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture. Chem. Eng. J. 2018, 333, 678–685. [Google Scholar] [CrossRef]
- Gai, S.; Zhang, J.; Fan, R.; Xing, K.; Chen, W.; Zhu, K.; Zheng, X.; Wang, P.; Fang, X.; Yang, Y. Highly stable zinc-based metal-organic frameworks and corresponding flexible composites for removal and detection of antibiotics in water. ACS Appl. Mater. Interfaces 2020, 12, 8650–8662. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A. Green synthesis of iron oxide/cellulose magnetic recyclable nanocomposite and its evaluation in ciprofloxacin removal from aqueous solutions. J. Iran. Chem. Soc. 2020, 1–11. [Google Scholar] [CrossRef]
- Nasseh, N.; Barikbin, B.; Taghavi, L.; Nasseri, M.A. Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies). Compos. Part B 2019, 159, 146–156. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, J.; Du, Q.; Zhang, H.; Cui, Y. Antibiotic removal by agricultural waste biochars with different forms of iron oxide. RSC Adv. 2019, 9, 14143–14153. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Xue, Q.; Liu, F.; Zhang, J.; Zhou, C.; Cao, J.; Chen, H. Mechanistic insight into interactions between tetracycline and two iron oxide minerals with different crystal structures. Chem. Eng. J. 2019, 366, 577–586. [Google Scholar] [CrossRef]
- Park, J.A.; Nam, A.; Kim, J.H.; Yun, S.T.; Choi, J.W.; Lee, S.H. Blend-electrospun graphene oxide/Poly(vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and anti-fouling properties. Chemosphere 2018, 207, 347–356. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; You, Q.; Wang, Q.; Liao, G.; Wang, D. Highly efficient removal of antibiotics and dyes from water by the modified carbon nanofibers composites with abundant mesoporous structure. Colloids Surf. A 2018, 558, 392–401. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Fan, X.; Quan, X.; Tan, F.; Zhang, Y.; Gao, J. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. J. Colloid Interface Sci. 2015, 447, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleki, A.Y.; Zilouei, H.; Khorasani, S.N.; Zargoosh, K. Adsorption of tetracycline from water using glutaraldehyde-crosslinked electrospun nanofibers of chitosan/poly(vinyl alcohol). Water Sci. Technol. 2018, 77, 1324–1335. [Google Scholar] [CrossRef] [PubMed]
- Kebede, T.G.; Seroto, M.B.; Chokwe, R.C.; Dube, S.; Nindi, M.M. Adsorption of antiretroviral (ARVs) and related drugs from environmental wastewaters using nanofibers. J. Environ. Chem. Eng. 2020, 8, 104049. [Google Scholar] [CrossRef]
- Kebede, T.G.; Dube, S.; Nindi, M.M. Application of mesoporous nanofibers as sorbent for removal of veterinary drugs from water systems. Sci. Total Environ. 2020, 738, 140282. [Google Scholar] [CrossRef] [PubMed]
- Mecha, A.C.; Chollom, M.N. Photocatalytic ozonation of wastewater: A review. Environ. Chem. Lett. 2020, 18, 1491–1507. [Google Scholar] [CrossRef]
- Shi, H.; Ni, J.; Zheng, T.; Wang, X.; Wu, C.; Wang, Q. Remediation of wastewater contaminated by antibiotics. A review. Environ. Chem. Lett. 2019, 18, 345–360. [Google Scholar] [CrossRef]
- Liu, F.; Yao, H.; Sun, S.; Tao, W.; Wei, T.; Sun, P. Photo-Fenton activation mechanism and antifouling performance of an FeOCl-coated ceramic membrane. Chem. Eng. J. 2020, 402, 125477. [Google Scholar] [CrossRef]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Parul; Kaur, K.; Badru, R.; Singh, P.P.; Kaushal, S. Photodegradation of organic pollutants using heterojunctions: A review. J. Environ. Chem. Eng. 2020, 8, 103666. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vo, D.V.N.; Yaashikaa, P.R.; Karishma, S.; Jeevanantham, S.; Gayathri, B.; Bharathi, V.D. Photocatalysis for removal of environmental pollutants and fuel production: A review. Environ. Chem. Lett. 2020, 1–23. [Google Scholar] [CrossRef]
- Gallagher, K.J. The atomic structure of tubular subcrystals of β-Iron(Ⅲ) oxide hydroxide. Nature 1970, 226, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ge, J.; Lei, B.; Xue, Y.; Du, Y. High quality β-FeOOH nanostructures constructed by a biomolecule-assisted hydrothermal approach and their pH-responsive drug delivery behaviors. CrystEngComm 2015, 17, 4064–4069. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Ren, T.Z.; Su, B.L. Surfactant mediated nanoparticle assembly of catalytic mesoporous crystalline iron oxide materials. Catal. Today 2004, 93–95, 743–750. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Peng, W.; Fang, Z.; Liu, J. Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions. Chem. Eng. J. 2019, 356, 904–914. [Google Scholar] [CrossRef]
- Luo, T.; Wang, M.; Tian, X.; Nie, Y.; Yang, C.; Lin, H.M.; Luo, W.; Wang, Y. Safe and efficient degradation of metronidazole using highly dispersed beta-FeOOH on palygorskite as heterogeneous Fenton-like activator of hydrogen peroxide. Chemosphere 2019, 236, 124367. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, H.; Tong, X.; Wang, Z.; Crittenden, J.C.; Huang, M. Integration of a photo-fenton reaction and a membrane filtration using CS/PAN@FeOOH/g-C3N4 electrospun nanofibers: Synthesis, characterization, self-cleaning performance and mechanism. Appl. Catal. B 2021, 281, 119519. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Chen, X.; Wang, L.; Cai, W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway. Chem. Eng. J. 2019, 369, 745–757. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Ding, L.; Yang, Y.; Zhang, T. MIL-88/PVB nanofiber as recyclable heterogeneous catalyst for photocatalytic and Fenton process under visible light irradiation. Chem. Phys. Lett. 2020, 749, 137431. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Li, G.; An, L.; Li, F.; Zhang, Z. Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism. Carbohydr. Polym. 2017, 168, 153–162. [Google Scholar] [CrossRef]
- Xu, Q.; Song, Z.; Ji, S.; Xu, G.; Shi, W.; Shen, L. The photocatalytic degradation of chloramphenicol with electrospun Bi2O2CO3-poly(ethylene oxide) nanofibers: The synthesis of crosslinked polymer, degradation kinetics, mechanism and cytotoxicity. RSC Adv. 2019, 9, 29917–29926. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shi, Y.; Zhang, S.; Liu, B.; Sun, X.; Yang, D. Optimizing the interface of C/titania@reduced graphene oxide nanofibers for improved photocatalytic activity. J. Mater. Sci. 2019, 54, 8907–8918. [Google Scholar] [CrossRef]
- Li, D.; Shi, W. Recent developments in visible-light photocatalytic degradation of antibiotics. Chin. J. Catal. 2016, 37, 792–799. [Google Scholar] [CrossRef]
- Ouyang, W.; Teng, F.; Fang, X. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: The influences of self-induced inner electric fields in the BiOCl nanosheets. Adv. Funct. Mater. 2018, 28, 1707178. [Google Scholar] [CrossRef]
- Song, W.; Zhao, H.; Shen, H.; Ye, J.; Zhao, D.; Li, Z. Enhanced sodium storage via the hetero-interface effect in BiOCl/TiO2 p-n junctions. Chem. Commun. 2019, 55, 4111–4114. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Liang, H.; Li, C.; Bai, J. The synthesis and enhanced photocatalytic activity of heterostructure BiOCl/TiO2 nanofibers composite for tetracycline degradation in visible light. J. Dispersion Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Li, S.; Hu, S.; Jiang, W.; Liu, Y.; Zhou, Y.; Liu, Y.; Mo, L. Hierarchical architectures of bismuth molybdate nanosheets onto nickel titanate nanofibers: Facile synthesis and efficient photocatalytic removal of tetracycline hydrochloride. J. Colloid Interface Sci. 2018, 521, 42–49. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Karagoz, B.; Arica, M.Y. Cyclic-carbonate functionalized polymer brushes on polymeric microspheres: Immobilized laccase for degradation of endocrine disturbing compounds. J. Ind. Eng. Chem. 2018, 60, 407–417. [Google Scholar] [CrossRef]
- Barrios-Estrada, C.; Rostro-Alanis, M.d.J.; Parra, A.L.; Belleville, M.P.; Sanchez-Marcano, J.; Iqbal, H.M.N.; Parra-Saldívar, R. Potentialities of active membranes with immobilized laccase for bisphenol A degradation. Int. J. Biol. Macromol. 2018, 108, 837–844. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coord. Chem. Rev. 2019, 388, 1–23. [Google Scholar] [CrossRef]
- de Cazes, M.; Belleville, M.P.; Mougel, M.; Kellner, H.; Sanchez-Marcano, J. Characterization of laccase-grafted ceramic membranes for pharmaceuticals degradation. J. Membr. Sci. 2015, 476, 384–393. [Google Scholar] [CrossRef]
- Zdarta, J.; Jankowska, K.; Bachosz, K.; Kijeńska-Gawrońska, E.; Zgoła-Grześkowiak, A.; Kaczorek, E.; Jesionowski, T. A promising laccase immobilization using electrospun materials for biocatalytic degradation of tetracycline: Effect of process conditions and catalytic pathways. Catal. Today 2020, 348, 127–136. [Google Scholar] [CrossRef]
- Shraddha; Shekher, R.; Sehgal, S.; Kamthania, M.; Kumar, A. Laccase: Microbial sources, production, purification, and potential biotechnological applications. Enzyme Res. 2011, 2011, 217861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathishkumar, P.; Chae, J.C.; Unnithan, A.R.; Palvannan, T.; Kim, H.Y.; Lee, K.J.; Cho, M.; Kamala-Kannan, S.; Oh, B.T. Laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac. Enzyme Microb. Technol. 2012, 51, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Ashraf, S.S.; Barcelo, D.; Iqbal, H.M.N. Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total Environ. 2019, 691, 1190–1211. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, W.; Liu, Y.; Zhang, K.; Chen, Y.; Yin, X. Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J. Mol. Struct. 2020, 1220, 128769. [Google Scholar] [CrossRef]
- AL-Jbour, N.D.; Beg, M.D.; Gimbun, J.; Alam, A.M.M. An overview of chitosan nanofibers and their applications in the drug delivery process. Curr. Drug Deliv. 2019, 16, 272–294. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, Y.; Xue, Y.; Li, W.; Hu, Y. Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chem. Eng. J. 2020, 391, 123564. [Google Scholar] [CrossRef]
- Siddeeg, S.M.; Amari, A.; Tahoon, M.A.; Alsaiari, N.S.; Rebah, F.B. Removal of meloxicam, piroxicam and Cd2+ by Fe3O4/SiO2/glycidyl methacrylate-S-SH nanocomposite loaded with laccase. Alexandria Eng. J. 2020, 59, 905–914. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Zhu, Q.; Song, J.; Li, S.; Liu, X. Improved performance of immobilized laccase on Fe3O4@C-Cu2+ nanoparticles and its application for biodegradation of dyes. J. Hazard. Mater. 2020, 399, 123088. [Google Scholar] [CrossRef]
- Maryšková, M.; Ardao, I.; García-González, C.A.; Martinová, L.; Rotková, J.; Ševců, A. Polyamide 6/chitosan nanofibers as support for the immobilization of trametes versicolor laccase for the elimination of endocrine disrupting chemicals. Enzyme Microb. Technol. 2016, 89, 31–38. [Google Scholar] [CrossRef]
- Koloti, L.E.; Gule, N.P.; Arotiba, O.A.; Malinga, S.P. Laccase-immobilized dendritic nanofibrous membranes as a novel approach towards the removal of bisphenol A. Environ. Technol. 2018, 39, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Niu, J.; Liu, J.; Yin, L.; Xu, J. In situ encapsulation of laccase in microfibers by emulsion electrospinning: Preparation, characterization, and application. Bioresour. Technol. 2010, 101, 8942–8947. [Google Scholar] [CrossRef] [PubMed]
Classification | Stands for Antibiotics (CAS Number) | Molecular Formula | Solubility (mg/L) | Dissociation Constant pK a | Predicted Critical Effect Concentration (ng/L) b |
---|---|---|---|---|---|
Aminoglycosides | Gentamicin (1403-66-3) | C21H43N5O7 | 1 × 105 | 9.0 | 1.8 × 108 |
β-Lactam | Amoxicillin (26787-78-0) | C16H19N3O5S | 3.43 × 103 (25 °C, in water) | 3.2, 11.7 | 1.9 × 1014 |
Carbenicillin (4697-36-3) | C17H18N2O6S | 451 | |||
Oxacillin (66-79-5) | C19H19N3O5S | 13.9 | 2.72 | ||
Piperacillin (61477-96-1) | C23H27N5O7S | 119 | 350,026 | ||
Phenoxypenicillin (87-08-1) | C16H18N2O5S | 240 (pH = 1.8, in water) | 2.79 | 31,117 | |
Chloramphenicol | Chloramphenicol (56-75-7) | C11H12Cl2N2O5 | 2500 (25 °C, in water) | 8.1 × 106 | |
Fluoroquinolones | Ciprofloxacin (85721-33-1) | C17H18FN3O3 | 30,000 (20 °C, in water) | 6.09 | 1.9 × 107 |
Danofloxacin (112398-08-0) | C19H20FN3O3 | ||||
Enoxacin (74011-58-8) | C15H17FN4O3 | 3430 | |||
Enrofloxacin (93106-60-6) | C19H22FN3O3 | >53.9 | |||
Levofloxacin (100986-85-4) | C18H20FN3O4 | >54.2 | 6.25 | 1.5 × 107 | |
Norfloxacin (70458-96-7) | C16H18FN3O3 | 280 (25 °C, in water) | 6.34, 8.75 | 6.4 × 106 | |
Ofloxacin (82419-36-1) | C18H20FN3O4 | 1.08 × 104 (25 °C, in water) | 5.97, 9.28 | 2.7 × 107 | |
Sarafloxacin (98105-99-8) | C20H17F2N3O3 | 1.14 × 103 (25 °C, in water) | 5.6, 8.2 | ||
Glycopeptides | Vancomycin (1404-90-6) | C66H75Cl2N9O24 | 225 | 2.6, 7.2, 8.6, 9.6, 10.5, 11.7 | 1.5 × 108 |
Lincosamides | Clindamycin (18323-44-9) | C18H33ClN2O5S | 30.61 (25 °C, in water) | 131,513 | |
Lincomycin (154-21-2) | C18H34N2O6S | 927 (25 °C, in water) | 7.6 | ||
Macrolides | Clarithromycin (81103-11-9) | C38H69NO13 | 1.693 (25 °C, in water) | 8.99 | 7267 |
Erythromycin-H2O (67733-56-6) | C37H69NO14 | ||||
Oleandomycin (3922-90-5) | C35H61NO12 | 16 (25 °C, in water) | 8.84 | ||
Roxithromycin (80214-83-1) | C41H76N2O15 | 0.0189 (25 °C) | 324,384 | ||
Spiramycin (8025-81-8) | C43H74N2O14 | Slightly soluble in water | 7.88, 9.28 | ||
Tylosin (1401-69-0) | C46H77NO17 | 5000 (25 °C, in water) | 7.73 | ||
Quinolones | Flumequine (42835-25-6) | C14H12FNO3 | 2.19 × 103 (25 °C, in water) | 6.5 | |
Nalidixic Acid (389-08-2) | C12H12N2O3 | 100 (23 °C) | 8.6 | ||
Oxolinic Acid (14698-29-4) | C13H11NO5 | ||||
Pefloxacin (70458-92-3) | C17H20FN3O3 | 1.14 × 104 (25 °C) | |||
Pipemidic Acid (51940-44-4) | C14H17N5O3 | 322 (25 °C) | |||
Rifamycins | Rifamycin (6998-60-3) | C37H47NO12 | Insoluble | 1.8 | |
Sulfonamides | Sulfamethoxazole (723-46-6) | C10H11N3O3S | 610 (37 °C, in water) | 1.6, 5.7 | 9.8 × 107 |
Sulfamethazine (57-68-1) | C12H14N4O2S | 1.5 × 103 (29 °C, in water), 1.92 × 103 (37 °C, in water) | 2.07, 7.49 | ||
N4-Acetylsulfamethazine (100-90-3) | C14H16N4O3S | ||||
Sulfadimethoxine (122-11-2) | C12H14N4O4S | 343 | |||
Sulfamethoxypyridazine (80-35-3) | C11H12N4O3S | ||||
Sulfapyridine (144-83-2) | C11H11N3O2S | 268 (25 °C) | 8.43 | ||
Sulfasalazine (599-79-1) | C18H14N4O5S | 13 (25 °C, in water) | 2.3, 6.5 | ||
Sulfasoxazole (127-69-5) | C11H13N3O3S | 300 (37 °C, in water, pH = 4.5) | 5 | ||
Sulfathiazole (72-14-0) | C9H9N3O2S2 | 373 (25 °C, in water) | 2.2, 7.24 | ||
Tetracyclines | Chlortetracycline (57-62-5) | C22H23ClN2O8 | 2.4 × 107 | ||
Doxycycline (564-25-0) | C22H24N2O8 | 3.5, 7.7, 9.5 | 8 × 107 | ||
Oxytetracycline (79-57-2) | C22H24N2O9 | 313 (25 °C, in water) | 3.27, 9.5 | 9.9 × 109 | |
Tetracycline (60-54-8) | C22H24N2O8 | 231 (25 °C, in water) | 3.3 | 6.7 × 107 |
System parameters | Polymer molecular weight | When the molecular weight is large, the prepared fiber presents a straight line without beads and a huge diameter. |
Polymer solution concentration | An appropriate large concentration is conducive to the formation of defect-free linear fibers; excessively large concentration makes it difficult to form fibers | |
Polymer solution conductivity | When the electrical conductivity increases, the fiber diameter decreases, and bead-free fiber is easily formed; excessively high electrical conductivity reduces the uniformity of the fiber diameter distribution, and normal electrospinning is not possible | |
Dielectric constant | Within a specific range, the larger the dielectric constant of the same solvent, the smaller diameter of the fiber; an excessively high dielectric constant affects the jet stability | |
Surface tension | Appropriate reduction of surface tension is conducive to the formation of smooth fibers | |
Viscosity | Appropriately increasing the viscosity will help to form uniform bead-free fibers, but the fiber diameter will increase; extremely large viscosity results in the formation of bead-like fibers and clogging, making it challenging to perform spinning; extremely small viscosity will easily cause electrospraying | |
Solvent | High solubility is conducive to the formation of fibers with good morphology; proper volatility is conducive to the spinning process and the construction of bead-free fibers | |
Process parameters | Applied voltage | In the proper range, the higher the voltage, the more conducive to the formation of uniform fibers with a small diameter; when the voltage is extremely high or low, the fiber diameter increases, resulting in uneven fiber diameter distribution. |
Fluid flow rate | The flow rate increases, the fiber diameter increases, and a bead-like fiber is easily formed. | |
Receiving distance | Within a specific range, the smaller the receiving distance, the smaller diameter of the fiber; when the receiving distance is extremely short, the fiber diameter will increase instead. | |
Diameter of spinneret | When the spinneret diameter is small, the diameter of the fiber is small. | |
Environmental parameters | Temperature | Within a specific range, the temperature increases, and the fiber diameter decreases. |
Humidity | Bead-like fibers are easily produced under high humidity. |
Types of Polymers | Pretreatment Technology | Post-Treatment Technology | Effect on Antibiotic Removal | Reference |
---|---|---|---|---|
Polylactic acid | Doping TiO2 into PLA solution (Acetone/DMF = 3/2 v/v) | The fibers were deposited on fiberglass supports to prepare fiberglass fabric plain woven-type membrane, fiberglass mat-type membrane and fiberglass fabric one-fold edge-type membrane | After photocatalytic 30 min, AC was almost completely removed in aqueous solution, and the removal effect of fiberglass fabric plain woven-type membrane was the best | [12] |
Polysulfone | Mixing TiO2/AgNPs composite particles into PSF solution (DMF/NMP = 7/3 v/v) | Polyamide active coating was formed on the membrane surface by interfacial polymerization | The permeability of TC resistance gene in the membrane was less than 9% | [14] |
Polyethylene terephthalate | Dispersing g-C3N4 into the PET solution (HFIP) | After heat treating the PET fibers in alkaline aqueous solution in 65 °C for 1.5 h, g-C3N4 was exposed to the surface of PET and transformed from deactivation to reappearance | Under sunlight, the photocatalytic activity for the degradation of antibiotics such as SQX and SD was high, and the photodegradation rate of SQX reached 100% (pH = 5) in 2.5 h | [124] |
Polyvinylpyrrolidone | Putting TiO2 gel into PVP solution (ethanol) | g-C3N4 nano-sheath was formed on the fiber surfaces by in-situ thermal polymerization | The photodegradation rate of TC was as high as 90.8% in 60 min, and the inactivation of Escherichia coli was 6 log after visible light irradiation on 90 min | [125] |
Polyethylene glycol, Polyethylene terephthalate | Adding PEG into the mixed solution of g-C3N4 and PET (HFIP) | The fiber membrane was soaked in a water bath at 60 °C for 24 h, and the porous fiber was obtained by removing PEG | Under visible light, the degradation efficiency of SQX reached 100% in 2 h | [127] |
Polyvinyl alcohol | Adding 20% urea to PVA solution (water) | The PVA fibers were immersed in FeCl3 aqueous solution for Fe3+ complexation and then using NaBH4 solution to reduce Fe3+, ZVI NPs was synthesized in situ and immobilized, and then freeze-dried | The adsorption equilibrium of STZ was reached in 570 min, and the electrocatalysis degradation of STZ reached 100% in 5 min | [128] |
Categories of Electrospun Functional Fiber Membranes | Types of Antibiotics | Best Adsorption Conditions | Maximum Adsorption Capacity | Reusability | Reference |
---|---|---|---|---|---|
PVA/SiO2 fiber membrane loaded with MOF | CAP | CAP concentration: 100 mg/L, Temperature: 298 K, Equilibrium time: 180 min, Oscillation rate: 200 r/min | 79.5 mg/g | [13] | |
PAN/Fe3O4 nanofiber membrane | TC | TC concentration: 22 mg/L, Temperature: 298 K, pH = 6 ± 0.05, Equilibrium time: 72 h, Oscillation rate: 150 r/min | 257.07 mg/g | Desorption agent: 0.01 M, NaOH solution, Adsorption efficiency: Only 2.72−3.61% decrease in five cycles | [130] |
PI-based carbon nanofiber membrane | TC | TC concentration: 20 mg/L, Temperature: 298 K, pH = 4–7, Equilibrium time: 19 h | 146.63 mg/g | Desorption agent: 1 M, NaOH solution, Adsorption efficiency: 9.3% decrease after five cycles | [131] |
PAN/ZIF-8 nanofiber membrane | TC | TC concentration: 50 mg/L, Temperature: 298 K, pH = 5, Equilibrium time: 72 h | 478.18 mg/g | Desorption agent: absolute ethanol, Adsorption efficiency: keeping not less than 85% of the initial adsorption capacity after five cycles | [132] |
MMT/CA nanofiber membrane | CIP | CIP concentration: 10 mg/L, Temperature: 303 K, pH = 6, Equilibrium time: 60 min, Oscillation rate: 100 r/min | 13.8 mg/g | Desorption agent: 10 mM NaOH solution, Adsorption efficiency: 5% decrease in CIP removal in each cycle | [149] |
GO/PVDF nanofiber membrane | TC | TC concentration: 200 mg/L, Temperature: 298 K, pH = 3.8–4.2, Equilibrium time: 60 min | 17.92 mg/g | [164] | |
PI/β-CD nanofiber membrane | TC | TC concentration: 20 mg/L, Temperature: 298 K, pH = 6, Equilibrium time: 1000 min, Oscillation rate: 120 r/min | 543.48 mg/g | Desorption agent: 1 M NaOH, Adsorption efficiency: 11.51% decrease after five cycles | [165] |
PAN carbon nanofiber membrane | CIP | CIP concentration: 10 mg/L, Temperature: 298 K, pH = 6.2, Equilibrium time: 8 h, Oscillation rate: 150 r/min | 0.68 mmol/g | [166] | |
CS/PVA nanofiber membrane (crosslinked by glutaraldehyde) | TC | TC concentration: 100 mg/L, Temperature: 297 ± 2 K, pH = 6, Oscillation rate: 120 r/min | 102 mg/g | [167] | |
Mondia white roots/PVA nanofiber membrane | Inosine, sulfamethoxazole, lidocaine, amitriptyline hydrochloride, prednisone, isoniazid, dexamethasone, ritonavir, efavirenz, fluconazole | Drug concentration: 0.5 mg/L, Temperature: 308 K, pH = 5, Balance time: 120 min, Oscillation rate: 125 r/min, | 75–320 mg/g | [168] | |
Mesoporous protein/PVA nanofiber membrane | Sulfonamides and veterinary drugs | Sulfonamides- Drug concentration: 0.1 mg/L, Temperature: 310 K, pH = 5.5, Equilibrium time: 60 min, veterinary drugs-, Drug concentration: 0.1 mg/L, Temperature: 300 K, pH = 5.5, Equilibrium time: 60 min, Oscillation rate: 125 r/min | The removal efficiency of sulfonamides: 86.9–95.9%, The removal efficiency of veterinary drugs: 32.62–100.73 mg/g | [169] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Kang, S.-X.; Yang, Y.-Y.; Yu, D.-G. Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review. Polymers 2021, 13, 226. https://doi.org/10.3390/polym13020226
Zhao K, Kang S-X, Yang Y-Y, Yu D-G. Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review. Polymers. 2021; 13(2):226. https://doi.org/10.3390/polym13020226
Chicago/Turabian StyleZhao, Kun, Shi-Xiong Kang, Yao-Yao Yang, and Deng-Guang Yu. 2021. "Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review" Polymers 13, no. 2: 226. https://doi.org/10.3390/polym13020226
APA StyleZhao, K., Kang, S. -X., Yang, Y. -Y., & Yu, D. -G. (2021). Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review. Polymers, 13(2), 226. https://doi.org/10.3390/polym13020226