A Novel Modeling Approach for Plastics Melting within a CFD-DEM Framework
Abstract
:1. Introduction
2. Novel Modeling Approach
2.1. DEM Approach
2.2. Extended CFD-DEM Approach
2.3. Novel Melting Model for Spherical Solids
2.4. Calculation of Frictional Heating
3. Melting Apparatus and Simulation Model
3.1. Principles and Functionality
3.2. Process Window
- Predrying of the plastic;
- Heating up the melting apparatus;
- Filling the prechamber with a defined amount of granules when the stamp is moved out;
- Control of the stamp and start of the drive which sets the ring in a rotational movement; and
- Removal of the forming melt film and stopping the time as soon as a steady state is reached.
3.3. Materials and Characterization
3.4. CFD-DEM Modeling of the Melting Apparatus
4. Results and Discussion
4.1. Influence of the Number of Shells
4.2. Comparison of the Calculated and Measured Melting Rates
- The melting model was set up for ideal spherical particles. However, the PP used in the experiment had an ellipsoidal granular form.
- In the experiment, granules were deformed by the stamp force and the rotation of the grooved ring, favoring the melting process. However, the DEM cannot completely map this kind of deformation of the particles. That is why the simulation values were lower than the experimental results.
- The Young’s modulus, which has a considerable influence on the melting behavior, was in reality temperature-dependent, but was assumed to be constant in the DEM. A temperature-dependent implementation of the Young’s modulus is not possible at present, as the Rayleigh time and the numerical stability of the simulation are directly influenced.
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Overview of Important Required Material Data
Mechanical and Other Properties | Method of Determination and Equipment Used |
---|---|
Young’s modulus | Tensile test acc. to DIN EN ISO 527 (temperature-dependent) |
Coefficient of friction | Literature value |
Poisson’s ratio | Literature value |
Coefficient of restitution | Universalprüfmaschinen ZPM1455, Zwick GmbH, acc. to ISO DIN EN ISO 527 |
Density (solid state) | Data sheet PPRP210G |
particle size distribution | High-resolution scanner Epson V850 pro, Epson K.K. |
Thermodynamic properties | |
Specific heat capacity | Differential scannig calorimetry acc. to DIN EN ISO 11357-4 |
Thermal diffusivity | Laser flash analysis |
Latent heat | Differential scannig calorimetry acc. to DIN EN ISO 11357-4 |
Density (liquid state) | Acc. to DIN EN ISO 1183-1 |
Appendix B. Mesh Convergence Study
References
- Bonten, C. Plastics Technology–Introduction and Fundamentals; Hanser Publisher: Munich, Germany, 2019; ISBN 979-1-56990-767-2. [Google Scholar]
- Michaeli, W. Extrusionswerkzeuge für Kunststoffe und Kautschuk. Bauarten, Gestaltung und Berechnungs-Möglichkeiten, 3; Auflage: Munich, Germany, 2009; ISBN 978-3-446-42026-7. [Google Scholar]
- Darnell, W.H.; Mol, E.A.J. Solids Conveying in Extruders. SPE J. 1956, 12, 20–29. [Google Scholar]
- Schneider, K. Der Fördervorgang in der Einzugszone eines Extruders. Chemieingenieurtechnik 1969, 41, 364–369. [Google Scholar] [CrossRef]
- Broyer, E.; Tadmor, Z. Solids Conveying in Screw Extruders Part I: A Modified Isothermal Model. Polym. Eng. Sci. 1972, 12, 12–24. [Google Scholar] [CrossRef]
- Tadmor, Z.; Broyer, E. Solids Conveying in Screw Extruders Part 2: Non Isothermal Model. Polym. Eng. Sci. 1972, 12, 378–386. [Google Scholar] [CrossRef]
- Hyun, K.S.; Spalding, M.A. A New Model for Solids Conveying in Single-screw Plasticating Extruders. SPE-ANTEC Tech. Pap. 1997, 1, 211–218. [Google Scholar]
- Schneider, K. Der Einfluß der Einzugszone auf die Fördercharakteristik eines Einschneckenextruders. Kunststoffe 1969, 59, 757–760. [Google Scholar]
- Schneider, K. Der Fördervorgang in der Einzugszone Eines Extruders. Ph.D. Thesis, RWTH, Fakultät für Maschinenwesen, Aachen, Germany, 1968. [Google Scholar]
- Grünschloss, E. Solids conveying in single screw extruders with helical grooves in the barrel. SPE-ANTEC Tech. Pap. 1979, 25, 160–165. [Google Scholar]
- Peiffer, H. Zum Förderproblem in der Genuteten Einzugszone von Einschneckenextrudern. Ph.D. Thesis, RWTH, Fakultät für Maschinenwesen, Aachen, Germany, 1982. [Google Scholar]
- Potente, H.; Schöppner, V. A Throughput Model for Grooved Bush Extruders. Int. Polym. Proc. 1995, 10, 289–295. [Google Scholar] [CrossRef]
- Potente, H.; Pohl, T.; Vinke, T. Einrieselverhalten bei Einschneckenextrudern Füllgrad im Einzugsbereich beeinflusst den spezifischen Durchsatz. Kunststoffe 2001, 91, 62–66. [Google Scholar]
- Moysey, P.A.; Thompson, M.R. Investigation of Solids Transport in a Single-Screw Extruder Using a 3-D Discrete Particle Simulation. Polym. Eng. Sci. 2004, 44, 2203–2215. [Google Scholar] [CrossRef]
- Moysey, P.A.; Thompson, M.R. Discrete Particle Simulation of Solids Compaction and Conveying in a Single-Screw Extruder. Polym. Eng. Sci. 2008, 48, 62–73. [Google Scholar] [CrossRef]
- Trippe, J.; Schöppner, V. Investigation of the Influence of Material and Pellet Shape on the Dissipation in the Solids Conveying Zone of Single-Screw Extruders based on the discrete element method (DEM). In Proceedings of the AIP Conference 1914 (PPS-32), Lyon, France, 25–29 July 2016. [Google Scholar]
- Trippe, J.; Schöppner, V. Modeling of Solid Conveying Pressure Throughput Behaviour of Single Screw Smooth Barrel Extruders under Consideration of Backpressure and High Screw Speeds. Int. Polym. Proc. 2018, 33, 486–496. [Google Scholar] [CrossRef]
- Celik, O.; Bonten, C. Three-dimensional simulation of a single-screw extruder’s grooved feed section. In Proceedings of the AIP Conference Proceedings 1779 (PPS2015), Graz, Austria, 21–25 September 2016. [Google Scholar]
- Leßmann, J.S.; Weddige, R.; Schöppner, V.; Porsch, A. Modelling the Solids Throughput of Single Screw Smooth Barrel Extruders as a Function of the Feed Section Parameters. Int. Polym. Proc. 2012, 27, 469–477. [Google Scholar] [CrossRef]
- Leßmann, J.S.; Schöppner, V. Discrete element simulations and validation tests investigating solids-conveying processes with pressure buildup in single screw extruders. In Proceedings of the Polymer Processing Society (PPS-31), Jeju Island, Korea, 7–11 June 2015. [Google Scholar]
- Carrot, C.; Guillet, J.; May, J.F.; Paux, J.P. Modeling of the conveying of solid polymer in the feeding zone of intermeshing co-rotating twin extruders. Polym. Eng. Sci. 1993, 33, 700–708. [Google Scholar] [CrossRef]
- Potente, H.; Melisch, U.; Palluch, K.P. A Physico-Mathematical Model for Solids Conveying in Co-Rotating Twin Screw Extruders. Int. Polym. Proc. 1996, 11, 29–41. [Google Scholar] [CrossRef]
- Scharr, K.; Schöppner, V. Phänomenorientierte Untersuchung der Feststoffförderzonen gleichläufiger Doppelschneckenextruder mithilfe der DEM-Simulation. Z. Kunstst. 2017, 13, 196–211. [Google Scholar] [CrossRef]
- Maddock, B. A visual analysis of flow and mixing in extruder screws. SPE J. 1959, 15, 383–389. [Google Scholar]
- Tadmor, Z. Fundamentals of plasticating extrusion. I. A theoretical model for melting. Polym. Eng. Sci. 1966, 6, 185–190. [Google Scholar] [CrossRef]
- Tadmor, Z.; Duvdevani, I.; Klein, I. Melting in plasticating extruders theory and experiments. Polym. Eng. Sci. 1967, 7, 198–217. [Google Scholar] [CrossRef]
- Donovan, R. A theoretical melting model for plasticating extruders. Polym. Eng. Sci. 1971, 11, 247–257. [Google Scholar] [CrossRef]
- Pearson, J.R.A. On the melting of solids near a hot moving interface, with particular reference to beds of granular polymers. Int. J. Heat Mass Tran. 1976, 19, 405–411. [Google Scholar] [CrossRef]
- Potente, H. An analytical model of partial and through melting in single-screw extruders. Int. Polym. Proc. 1991, 6, 297–303. [Google Scholar] [CrossRef]
- Viriyayuthakorn, M.; Kassahun, B. A three dimensional model for plasticating extrusion screw design. SPE-ANTEC Tech. Pap. 1985, 30, 81–84. [Google Scholar]
- Altinkaynak, A.; Gupta, M.; Spalding, M.; Crabtree, S. Melting in a single screw extruder: Experiments and 3D finite element simulations. Int. Polym. Proc. 2011, 26, 182–196. [Google Scholar] [CrossRef]
- Hopmann, C.; Kremer, C.; Grammel, S. Predicting the Melting Behavior Within a Single Screw Extruder Using 3D FVM Simulations. In Proceedings of the Polymer Processing Society Pattaya (PPS-28), Pattaya, Thailand, 11–15 December 2012. [Google Scholar]
- Wilczyński, K.; Nastaj, A.; Lewandowski, A.; Wilczyński, K.J.; Buziak, K. Fundamentals of Global Modeling for Polymer Extrusion. Polymers 2019, 11, 2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karrenberg, G.; Neubrech, B.; Wortberg, J. CFD-Simulation der Kunststoffplastifizierung in einem Extruder mit durchgehend genutetem Zylinder und Barriereschnecke. Z. Kunstst. 2016, 12, 206–238. [Google Scholar] [CrossRef] [Green Version]
- CFDEM®Project. Available online: https://www.cfdem.com/ (accessed on 14 October 2020).
- OpenFOAM. Available online: https://openfoam.org/ (accessed on 14 October 2020).
- LIGGGHTS®-PUBLIC. Available online: https://www.cfdem.com/liggghtsr-open-source-discrete-element-method-particle-simulation-code (accessed on 15 October 2020).
- Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; Pieker, S. Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 2012, 12, 140–152. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B. D Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Weymouth, G.D.; Yue, D.K.-P. Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids. J. Comput. Phys. 2010, 229, 2853–2865. [Google Scholar] [CrossRef]
- Hertz, H. Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 1882, 92, 156–171. [Google Scholar]
- Mindlin, R.D.; Deresiewicz, H. Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 1953, 20, 327–344. [Google Scholar]
- Mindlin, R.D. Compliance of elastic bodies in contact. J. Appl. Mech. 1949, 16, 259–268. [Google Scholar]
- Chaudhuri, B.; Muzzio, F.J.; Tomassone, M.S. Modeling of heat transfer in granular flow in rotating vessels. Chem. Eng. Sci. 2006, 61, 6348–6360. [Google Scholar] [CrossRef]
- Li, J.; Mason, D.J. A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technol. 2000, 112, 273–282. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Tsuji, T.; Yabumoto, K.; Tanaka, T. Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM-CFD coupling simulation. Powder Technol. 2008, 184, 132–140. [Google Scholar] [CrossRef]
- Kafui, K.D.; Thornton, C.; Adams, M.J. Discrete particle-continuum modelling of gas-solid fluidised beds. Chem. Eng. Sci. 2002, 57, 2395–2410. [Google Scholar] [CrossRef]
- Gidaspow, D.; Bezburuah, R.; Ding, J. Hydrodynamics of circulating fluidized beds, kinetic theory approach. In Proceedings of the 7th Engineering Foundation Conference on Fluidization, Brisbane, Australia, 3–8 May 1992. [Google Scholar]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89. [Google Scholar]
- Wen, C.-Y.; Yu, Y.H. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 1966, 62, 100. [Google Scholar]
- Rusche, H. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions. Ph.D. Thesis, Department of Mechanical Engineering, University of London, London, UK, 2002. [Google Scholar]
- Ngyuen, V.D.; Fortin, J.; Guessasma, M.; Bellenger, E.; Cogné, C. Thermomechanical modelling of friction effects in granular flows using the discrete element method. J. Mech. Mater. Struct. 2009, 4, 413–426. [Google Scholar] [CrossRef]
- Chung, C.I. Extrusion of Polymers: Theory and Practice, 2nd ed.; Carl Hanser Verlag: Munich, Germany, 2010; ISBN 978-3-446-42409-8. [Google Scholar]
- LabVIEW. Available online: https://www.ni.com/de-de/shop/labview.html (accessed on 15 October 2020).
- Data Sheet Moplen RP210G. Available online: https://www.lyondellbasell.com/en/polymers/p/Moplen-RP210G/d5de99ab-68e9-417c-838e-0bd482f5b4ac (accessed on 11 January 2021).
- ANSYS ICEM CFDTM. Available online: https://www.ansys.com/ (accessed on 15 October 2020).
- ParaVIEW. Available online: https://www.paraview.org/ (accessed on 15 October 2020).
- Avila, J.A.; Grünschloss, E.; Epple, S.; Bonten, C. Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel—Part I: The Melting Model. Int. Poly. Proc. 2015, 2, 284–296. [Google Scholar]
Parameter | Value |
---|---|
rotational speed | 1, 2, and 3 min−1 |
housing temperature | 200 °C |
ring temperature | 200 °C |
prechamber temperature | 130 °C |
stamp force | 1000 N |
rotating ring | helically grooved |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celik, A.; Bonten, C.; Togni, R.; Kloss, C.; Goniva, C. A Novel Modeling Approach for Plastics Melting within a CFD-DEM Framework. Polymers 2021, 13, 227. https://doi.org/10.3390/polym13020227
Celik A, Bonten C, Togni R, Kloss C, Goniva C. A Novel Modeling Approach for Plastics Melting within a CFD-DEM Framework. Polymers. 2021; 13(2):227. https://doi.org/10.3390/polym13020227
Chicago/Turabian StyleCelik, Alptekin, Christian Bonten, Riccardo Togni, Christoph Kloss, and Christoph Goniva. 2021. "A Novel Modeling Approach for Plastics Melting within a CFD-DEM Framework" Polymers 13, no. 2: 227. https://doi.org/10.3390/polym13020227
APA StyleCelik, A., Bonten, C., Togni, R., Kloss, C., & Goniva, C. (2021). A Novel Modeling Approach for Plastics Melting within a CFD-DEM Framework. Polymers, 13(2), 227. https://doi.org/10.3390/polym13020227