Investigation on the Compressive Strength and Time of Setting of Low-Calcium Fly Ash Geopolymer Paste Using Response Surface Methodology
Abstract
:1. Introduction
1.1. Setting Time
1.2. Compressive Strength
1.3. Response Surface Methodology
2. Materials and Methods
2.1. Materials
2.2. Parameters
2.2.1. Activator-to-Precursor Ratio
2.2.2. Water-to-Rolids Ratio
2.2.3. NaOH-to-Waterglass Ratio
2.3. Experimental Procedure/Geopolymer Synthesis
2.4. Unconfined Compressive Strength (UCS)
2.5. Initial and Final Setting Time
3. Results and Discussion
3.1. Factors Affecting Initial and Final Setting Times
3.2. Factors Affecting Compressive Strength
3.3. Response Surface Analysis
3.4. Qualitative Assessment of Geopolymer Samples
3.5. Confirmatory Run
3.6. Possible In Situ Applications
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN | UN DESA Department of Economic and Social Affairs. United Nations. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 16 May 2018).
- International Energy Agency (IEA). Cement Technology Roadmap Plots Path to Cutting CO2 Emissions 24% by 2050—News. IEA. Available online: https://www.iea.org/news/cement-technology-roadmap-plots-path-to-cutting-co2-emissions-24-by-2050 (accessed on 6 April 2018).
- Davidovits, J. Geopolymers. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Ferdous, M.W.; Kayali, O.; Khennane, A. A detailed procedure of mix design for fly ash based geopolymer concrete. In Proceedings of the Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013), Melbourne, Australia, 11–13 December 2013. [Google Scholar]
- Jamora, J.B.; Gudia, S.E.L.; Go, A.W.; Giduquio, M.B.; Loretero, M.E. Potential CO2 reduction and cost evaluation in use and transport of coal ash as cement replacement: A case in the Philippines. Waste Manag. 2020, 103, 137–145. [Google Scholar] [CrossRef]
- Department of Energy. List of Existing Power Plants as of December 31, 2020. Available online: https://www.doe.gov.ph/list-existing-power-plants?ckattempt=1 (accessed on 3 June 2021).
- Ongpeng, J.; Gapuz, E.; Andres, J.J.; Prudencio, D.; Cuadlisan, J.; Tadina, M.; Zacarias, A.; Benauro, D.; Pabustan, A. Alkali-activated binder as stabilizer in compressed earth blocks. IOP Conf. Ser. Mater. Sci. Eng. 2020, 849, 012042. [Google Scholar] [CrossRef]
- Ongpeng, J.; Guades, E.; Promentilla, M. Cross-organizational learning approach in the sustainable use of fly ash for geopolymer in the Philippine construction industry. Sustainability 2021, 13, 2454. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- ASTM International. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM C618-19; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Wijaya, A.L.; Ekaputri, J.J. Triwulan factors influencing strength and setting time of fly ash based-geopolymer paste. MATEC Web Conf. 2017, 138, 01010. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle; ASTM C191-19; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Zhang, H. Cement. In Building Materials in Civil Engineering Essay; Woodhead: Sawston, UK, 2011; pp. 46–423. [Google Scholar]
- Elyamany, H.E.; Elmoaty, A.E.M.A.; Elshaboury, A.M. Setting time and 7-day strength of geopolymer mortar with various binders. Constr. Build. Mater. 2018, 187, 974–983. [Google Scholar] [CrossRef]
- Hardjito, D.; Cheak, C.C.; Ing, C.H.L. Strength and setting times of low calcium fly ash-based geopolymer mortar. Mod. Appl. Sci. 2008, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Rao, G.M.; Rao, T.D.G. Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arab. J. Sci. Eng. 2015, 40, 3067–3074. [Google Scholar] [CrossRef]
- Sofri, L.A.; Abdullah, M.M.A.B.; Hasan, M.R.M.; Huang, Y. The influence of sodium hydroxide concentration on physical properties and strength development of high calcium fly ash based geopolymer as Pavement Base Materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 864, 012016. [Google Scholar] [CrossRef]
- Hardjito, D.; Rangan, B.V.; Sumajouw, D.M.J.; Wallah, S.E. On the development of fly ash-based geopolymer concrete. ACI Mater. J. 2004, 101, 467–472. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A. An overview of the chemistry of alkali-activated cement-based binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Sawston, UK, 2015; Volume 1, pp. 19–47. [Google Scholar] [CrossRef]
- Vijai, K.; Kumutha, R.; Vishnuram, B. Experimental investigations on mechanical properties of geopolymer concrete composites. Asian J. Civ. Eng. 2012, 13, 89–96. [Google Scholar]
- Reed, M.; Lokuge, W.; Karunasena, W. Fibre-reinforced geopolymer concrete with ambient curing for in situ applications. J. Mater. Sci. 2014, 49, 4297–4304. [Google Scholar] [CrossRef] [Green Version]
- Vora, P.R.; Dave, U.V. Parametric studies on compressive strength of geopolymer concrete. Procedia Eng. 2013, 51, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.M.A.B.; Kamarudin, H.; Abdulkareem, O.A.; Ghazali, C.M.R.; Rafiza, A.; Norazian, M. Optimization of alkaline activator/fly ash ratio on the compressive strength of manufacturing fly ash-based geopolymer. Appl. Mech. Mater. 2011, 110-116, 734–739. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Ma, X.; Reid, A.; Wang, H. Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers. Cem. Concr. Compos. 2018, 92, 165–177. [Google Scholar] [CrossRef]
- Rangan, B. Engineering properties of geopolymer concrete. Geopolymers 2009, 1, 211–226. [Google Scholar] [CrossRef]
- ASTM International. Standard Specification for Portland Cement; ASTM C150/C150M-21; ASTM International: West Conshohocken, PA, USA, 2021. [Google Scholar]
- Ranade, S.; Thiagarajan, P. Selection of a design for response surface. IOP Conf. Series Mater. Sci. Eng. 2017, 263, 022043. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lu, D.; Gao, X. Optimization of mixture proportions by statistical experimental design using response surface method - A review. J. Build. Eng. 2021, 36, 102101. [Google Scholar] [CrossRef]
- Soto-Pérez, L.; López, V.; Hwang, S.S. Response Surface Methodology to optimize the cement paste mix design: Time-dependent contribution of fly ash and nano-iron oxide as admixtures. Mater. Des. 2015, 86, 22–29. [Google Scholar] [CrossRef]
- Lin, R.-S.; Han, Y.; Wang, X.-Y. Experimental study on optimum proportioning of Portland cements, limestone, metakaolin, and fly ash for obtaining quaternary cementitious composites. Case Stud. Constr. Mater. 2021, 15, e00691. [Google Scholar] [CrossRef]
- Jones, B.; Goos, P. I-Optimal Versus D-Optimal Split-Plot Response Surface Designs. J. Qual. Technol. 2012, 44, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Longos, A.; Tigue, A.; Dollente, I.; Malenab, R.; Bernardo-Arugay, I.; Hinode, H.; Kurniawan, W.; Promentilla, M. Optimization of the mix formulation of geopolymer using nickel-laterite mine waste and coal fly ash. Minerals 2020, 10, 1144. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K.; Rangan, V.B. Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia Eng. 2015, 125, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Aliabdo, A.A.; Elmoaty, A.E.M.A.; Salem, H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016, 121, 694–703. [Google Scholar] [CrossRef]
- Topark-Ngarm, P.; Chindaprasirt, P.; Sata, V. Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. J. Mater. Civ. Eng. 2015, 27, 04014198. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens); ASTM C109/C109M-21; ASTM International: West Conshohocken, PA, USA, 2021. [Google Scholar]
- Jaya, R.P. Porous concrete pavement containing nanosilica from black rice husk ash. New Materials in Civil Engineering 2020, 1, 493–527. [Google Scholar] [CrossRef]
- Hill and Griffith Company. Avoiding Surface Imperfections in Concrete: Blowholes, Crazing, Dusting, Flaking, Honeycombing and Popouts; Hill and Griffith Company: St Leonards, Australia, 2020; Available online: http://blog.hillandgriffith.com/concrete-blog/avoiding-surface-imperfections-in-concrete-bugholes-crazing-dusting-flaking-honeycombing-and-popouts (accessed on 21 February 2021).
- Barbosa, V.F.; MacKenzie, K.; Thaumaturgo, C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000, 2, 309–317. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L.; Ma, X.; Wang, H. Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr. Build. Mater. 2016, 113, 237–245. [Google Scholar] [CrossRef]
- Allahverdi, A.; Kani, E.N.; Hossain, K.M.A.; Lachemi, M. Methods to control efflorescence in alkali-activated cement-based materials. Mortars and Concretes 2015, 1, 463–483. [Google Scholar] [CrossRef]
- ASTM C1713-17. Standard Specification for Mortars for the Repair of Historic Masonry; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Zhang, Z.; Wang, H.; Provis, J.L.; Andrew, R. Efflorescence: A critical challenge for geopolymer applications? In Proceedings of the Concrete Institute of Australia’s Biennial National Conference (Concrete 2013): Understanding Concrete, Gold Coast, Australia, 16–18 October 2013. [Google Scholar]
- Association of Structural Engineers of the Philippines. National Structural Code of the Philippines 2010: Buildings, Towers and other Vertical Structures, 6th ed.; Association of Structural Engineers of the Philippines: Quezon City, Philippines, 2010; ISBN 2094-5477. [Google Scholar]
- Japan International Cooperation Agency. The Urgent Development Study on the Project on Rehabilitation and Recovery from Typhoon Yolanda in the Philippines, Implemented by DOF, DPWH, DILG, Philippines. Available online: https://openjicareport.jica.go.jp/pdf/12283420_03.pdf (accessed on 21 February 2020).
- Ducman, V.; Šajna, A. Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures; Woodhead Publishing: Sawston, UK, 2017; pp. 263–292. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, K.; Fu, C. Shrinkage behavior of fly ash based geopolymer pastes with and without shrinkage reducing admixture. Cem. Concr. Compos. 2019, 98, 74–82. [Google Scholar] [CrossRef]
- Ongpeng, J.M.C.; Roxas, C.L.C.; Rubinos, I.T.B.; Escleto, A.T.T.; Tan, S.J.M.; Bolivar, E.M.C.; Promentilla, M.A.B. Reinforced Alkali-Activated Concrete with Induced Corrosion. Paper Presented at The Sustainable Construction Materials and Technologies. Available online: www.scopus.com (accessed on 21 February 2021).
Factor | Explanation | Reference |
---|---|---|
Concentration of NaOH (in terms of molarity | Direct relationship: an increase in molarity leads to an increase in compressive strength (ideal range: 8 M to 16 M) | [15,17,19,23] |
Sodium silicate-to-NaOH ratio (by mass) | Direct relationship: higher SS/SH ratio provides higher compressive strength (because of high waterglass content). | [19,23,24,25] |
Curing temperature | Heat-cured geopolymer possessed higher early-age compressive strength than ambient-cured geopolymer. Optimal temperature = 60 °C. | [19,23] |
Curing time (for heat curing) | Longer curing time results in higher compressive strength but curing beyond 48 h is no longer practical because of the minimal increase in strength. | [19,23] |
Water-to-solids ratio | Inverse relationship. As the ratio of water-to-geopolymer solids by mass increases, the compressive strength of geopolymer mortar decreases. | [16,19,23] |
Age | For ambient-cured samples, the age of geopolymer is essential, as it takes time for the geopolymerization to occur. For heat-cured samples, the target compressive strength is mostly attained within 7 days. | [22,26] |
Alkaline liquid to fly ash | Several authors have reported different findings regarding this factor: | |
1. It has no significant effect; | [23] | |
2. A higher A/F ratio leads to a decrease in compressive strength; | [15] | |
3. A higher A/F ratio leads to an increase in compressive strength with an optimal value of A/F = 0.4. | [16,24] | |
Plasticizer | Commonly used: naphthalene-based superplasticizer. Dosage beyond 2% by mass reduces compressive strength. | [19,23] |
Chemical Properties | (%) | Test Methods |
---|---|---|
Silicon Dioxide (SiO2) | 57.2 | ASTM C114 |
Aluminum Trioxide (Al2O3) | 21.8 | |
Ferric Oxide (Fe2O3) | 4.73 | |
Calcium Oxide (CaO) | 6.9 | |
Magnesium Oxide (MgO) | 9.9 | |
Loss on Ignition (LOI) | 0.6 | ASTM C311 |
Insoluble Residue (IR) | 55.1 | ASTM C114 |
Sulfur Trioxide (SiO3) | 1.23 | |
Moisture Content | 0.1 |
Physical Properties | Values | Test Methods | |
---|---|---|---|
Fineness, Retained on 45 μm Sieve | 12.8 | ASTM C430/C311 (sec 20) | |
Autoclave Expansion (%) | 0.07 | ASTM C151/C311 (sec 24) | |
Autoclave Contraction (%) | |||
Density (g/cm3) | 2.27 | ASTM C188/C311 (sec 19) | |
Strength Activity Index: (%) | ASTM C311 (sec 27, 28, 29) | ||
With Portland Cement, 7 days | 83.8 | ||
With Portland Cement, 28 days | 97.6 | ||
Control Mix | |||
Portland Cement, 7 days | 33.0 MPa | 4790 psi | |
Portland Cement, 28 days | 44.7 MPa | 6490 psi | |
Water Requirement (%) | 95 | ASTM C311 (sec 31) |
Chemical Composition | Content |
---|---|
SiO2 | 34.13% |
Na2O | 14.65% |
H2O | 51.22% |
Silica Modulus | 2.33 |
Factors | Low Level | Mid-Level | High Level |
---|---|---|---|
Factor 1: Activator-to-precursor ratio | 0.3 | interval | 0.5 |
Factor 2: Water-to-solids ratio | 0.2 | 0.3 | 0.4 |
Factor 3: NaOH-to-waterglass ratio | 0.4 | 0.5 | 1 |
Std Order/ Run Order | Factor 1: Activator-to-Precursor Ratio | Factor 2: Water-to-Solids Ratio | Factor 3: NaOH-to-WG Ratio |
---|---|---|---|
1 | 0.5 | 0.40 | 0.50 |
2 | 0.5 | 0.3 | 1.00 |
3 | 0.5 | 0.3 | 0.40 |
4 | 0.346 | 0.4 | 1.00 |
5 | 0.454 | 0.3 | 1.00 |
6 | 0.4 | 0.3 | 1.00 |
7 | 0.454 | 0.2 | 0.50 |
8 | 0.453 | 0.2 | 0.40 |
9 | 0.4 | 0.2 | 0.40 |
10 | 0.3 | 0.2 | 0.50 |
11 | 0.4 | 0.4 | 0.50 |
12 | 0.3 | 0.4 | 0.40 |
15 | 0.3 | 0.4 | 1.00 |
14 | 0.4 | 0.4 | 0.40 |
15 | 0.5 | 0.3 | 0.50 |
16 | 0.4 | 0.3 | 0.50 |
17 | 0.454 | 0.2 | 0.50 |
18 | 0.377 | 0.4 | 0.40 |
19 | 0.5 | 0.4 | 1.00 |
20 | 0.345 | 0.2 | 0.40 |
21 | 0.348 | 0.2 | 0.50 |
Std Order/ Run Order | Factor 1: (A/P) | Factor 2: (W/S) | Factor 3: (NaOH/WG) | Response 1: Initial Setting Time (min) | Response 2: Final Setting Time (min) | Response 3: Compressive Strength (MPa) | Setting Time Within Recommended Duration? [14] |
---|---|---|---|---|---|---|---|
1 | 0.50 | 0.4 | 0.5 | 30 | 85 | 7.20 | ✗ |
2 | 0.50 | 0.3 | 1 | 193 | 498 | - | ✗ |
3 | 0.50 | 0.3 | 0.4 | 195.09 | 312.8 | 5.33 | ✓ |
4 | 0.35 | 0.4 | 1 | 1441.86 | 2076.96 | 9.51 | ✗ |
5 | 0.45 | 0.3 | 1 | 723.38 | 1276 | 9.03 | ✗ |
6 | 0.40 | 0.3 | 1 | 146.29 | 339.31 | 9.20 | ✓ |
7 | 0.45 | 0.2 | 0.5 | 105.93 | 154.21 | 16.64 | ✓ |
8 | 0.45 | 0.2 | 0.4 | 86.25 | 209.96 | 21.78 | ✓ |
9 | 0.40 | 0.2 | 0.4 | 49 | 86 | 23.24 | ✓ |
10 | 0.30 | 0.2 | 0.5 | 28.14 | 49 | 24.13 | ✗ |
11 | 0.40 | 0.4 | 0.5 | 1375 | 1417 | - | ✗ |
12 | 0.30 | 0.4 | 0.4 | 1533 | 1786 | 2.44 | ✗ |
13 | 0.30 | 0.4 | 1 | 3747 | 4423 | 4.72 | ✗ |
14 | 0.40 | 0.4 | 0.4 | 2897 | 5730.33 | 3.43 | ✗ |
15 | 0.50 | 0.3 | 0.5 | 45 | 49 | 10.09 | ✓ |
16 | 0.40 | 0.3 | 0.5 | 80.66 | 129 | 9.23 | ✓ |
17 | 0.45 | 0.2 | 0.5 | 52 | 70 | 23.48 | ✓ |
18 | 0.38 | 0.4 | 0.4 | 133 | 238 | 6.00 | ✓ |
19 | 0.50 | 0.4 | 1 | 1671 | 2516 | 6.41 | ✗ |
20 | 0.35 | 0.2 | 0.4 | 56.55 | 88 | 20.20 | ✓ |
21 | 0.35 | 0.2 | 0.5 | 8.34 | 12 | 6.86 | ✗ |
Equation | F-Value | p-Value | Mean | Std. Dev. | Lack of Fit | R-Squared |
---|---|---|---|---|---|---|
Equation (2) | 7.27 | 0.0011 | 5.26 | 1.03 | 0.3576 | 0.76 |
Equation (3) | 6.54 | 0.0019 | 5.75 | 1.04 | 0.3915 | 0.74 |
Equation (4) | 11.41 | 0.0004 | 2.24 | 0.41 | 0.4281 | 0.70 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 46.17 | 6 | 7.70 | 7.27 | 0.0011 | significant |
A-A/P Ratio | 0.1169 | 1 | 0.1169 | 0.1105 | 0.7445 | |
B-Water to Solids Ratio | 16.91 | 1 | 16.91 | 15.98 | 0.0013 | |
C-NaOH/WG Ratio | 0.0239 | 1 | 0.0239 | 0.0226 | 0.8826 | |
AB | 8.27 | 1 | 8.27 | 7.82 | 0.0143 | |
AC | 2.61 | 1 | 2.61 | 2.47 | 0.1384 | |
BC | 2.35 | 1 | 2.35 | 2.22 | 0.1585 | |
Residual | 14.81 | 14 | 1.06 | |||
Lack of Fit | 14.56 | 13 | 1.12 | 4.42 | 0.3576 | not significant |
Pure Error | 0.2531 | 1 | 0.2531 | |||
Cor Total | 60.99 | 20 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 42.13 | 6 | 7.02 | 6.54 | 0.0019 | significant |
A-A/P Ratio | 0.2622 | 1 | 0.2622 | 0.2442 | 0.6288 | |
B-Water to Solids Ratio | 14.11 | 1 | 14.11 | 13.14 | 0.0028 | |
C-NaOH/WG Ratio | 0.2452 | 1 | 0.2452 | 0.2284 | 0.6401 | |
AB | 6.38 | 1 | 6.38 | 5.95 | 0.0287 | |
AC | 2.23 | 1 | 2.23 | 2.08 | 0.1714 | |
BC | 1.38 | 1 | 1.38 | 1.29 | 0.2759 | |
Residual | 15.03 | 14 | 1.07 | |||
Lack of Fit | 14.72 | 13 | 1.13 | 3.63 | 0.3915 | not significant |
Pure Error | 0.3119 | 1 | 0.3119 | |||
Cor Total | 57.16 | 20 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 5.78 | 3 | 1.93 | 11.41 | 0.0004 | significant |
A-A/P Ratio | 0.0814 | 1 | 0.0814 | 0.4814 | 0.4984 | |
B-Water to Solids Ratio | 5.49 | 1 | 5.49 | 32.47 | <0.0001 | |
C-NaOH/WG Ratio | 0.2311 | 1 | 0.2311 | 1.37 | 0.2606 | |
Residual | 2.54 | 15 | 0.1690 | |||
Lack of Fit | 2.48 | 14 | 0.1769 | 2.98 | 0.4281 | not significant |
Pure Error | 0.0593 | 1 | 0.0593 | |||
Cor Total | 8.32 | 18 |
Run | Factor 1: (A/P) | Factor 2: (W/S) | Factor 3: (NaOH/WG) | Response 1: Initial Setting Time (min) | Response 2: Final Setting Time (min) | Predicted UCS (MPa) | Response 3: Observed UCS (MPa) | Deviation |
---|---|---|---|---|---|---|---|---|
O1 | 0.381 | 0.222 | 0.401 | 60 | 130.0 | 16.75 | 16.75 | 0% |
O2 | 0.329 | 0.223 | 0.559 | 47.5 | 87.4 | 16.71 | 23.08 | 38.12% |
O3 | 0.361 | 0.228 | 0.422 | 57.5 | 106.8 | 16.35 | 21.51 | 31.56% |
Material | Minimum UCS (MPa) | Application | Source |
---|---|---|---|
Class A Concrete | 20.7 | Concrete structures and concrete pavement | DPWH and ASTM Standards [44,45] as summarized in Longos et al. [33] |
Class B Concrete | 16.5 | Pedestrian and light-traffic pavement | |
Class C Concrete | 20.7 | Plain concrete for structures | |
Class F Concrete | 11.8 | Plain concrete for leveling | |
Class R1 | 10 | Repair mortar | Ducman et al. [46] |
Class R2 | 15 | Repair mortar |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiatchon, P.R.J.; Dollente, I.J.R.; Abulencia, A.B.; Libre, R.G.D.G., Jr.; Villoria, M.B.D.; Guades, E.J.; Promentilla, M.A.B.; Ongpeng, J.M.C. Investigation on the Compressive Strength and Time of Setting of Low-Calcium Fly Ash Geopolymer Paste Using Response Surface Methodology. Polymers 2021, 13, 3461. https://doi.org/10.3390/polym13203461
Quiatchon PRJ, Dollente IJR, Abulencia AB, Libre RGDG Jr., Villoria MBD, Guades EJ, Promentilla MAB, Ongpeng JMC. Investigation on the Compressive Strength and Time of Setting of Low-Calcium Fly Ash Geopolymer Paste Using Response Surface Methodology. Polymers. 2021; 13(20):3461. https://doi.org/10.3390/polym13203461
Chicago/Turabian StyleQuiatchon, Pauline Rose J., Ithan Jessemar Rebato Dollente, Anabel Balderama Abulencia, Roneh Glenn De Guzman Libre, Jr., Ma. Beatrice Diño Villoria, Ernesto J. Guades, Michael Angelo Baliwag Promentilla, and Jason Maximino C. Ongpeng. 2021. "Investigation on the Compressive Strength and Time of Setting of Low-Calcium Fly Ash Geopolymer Paste Using Response Surface Methodology" Polymers 13, no. 20: 3461. https://doi.org/10.3390/polym13203461
APA StyleQuiatchon, P. R. J., Dollente, I. J. R., Abulencia, A. B., Libre, R. G. D. G., Jr., Villoria, M. B. D., Guades, E. J., Promentilla, M. A. B., & Ongpeng, J. M. C. (2021). Investigation on the Compressive Strength and Time of Setting of Low-Calcium Fly Ash Geopolymer Paste Using Response Surface Methodology. Polymers, 13(20), 3461. https://doi.org/10.3390/polym13203461