The Preparation and Characterization of Polylactic Acid Composites with Chitin-Based Intumescent Flame Retardants
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Measurements
2.3. Preparation of Flame Retardant PLA Samples
3. Results and Discussion
3.1. Flammability
3.2. Thermal Stability
3.3. Flame Retardant Mechanism
3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, G.F.; Huo, S.Q.; Wang, C.; Shi, Q.; Liu, Z.T.; Wang, H. One-step and green synthesis of a bio-based high-efficiency flame retardant for poly(lactic acid). Polym. Degrad. Stabil. 2021, 192, 109696–109704. [Google Scholar] [CrossRef]
- Erdem, A.; Dogan, M. Production and characterization of green flame retardant poly(lactic acid) composites. J. Polym. Environ. 2020, 28, 2837–2850. [Google Scholar] [CrossRef]
- Hu, X.; Sun, J.H.; Li, X.; Qian, L.J.; Li, J. Effect of phosphorus-nitrogen compound on flame retardancy and mechanical properties of polylactic acid. J. Appl. Polym. Sci. 2021, 138, 49829–49839. [Google Scholar] [CrossRef]
- Yang, W.; Yang, W.J.; Tawiah, B.; Zhang, Y.; Wang, L.L.; Zhu, S.E.; Chen, T.B.Y.; Yuen, A.C.Y.; Yu, B.; Liu, Y.F.; et al. Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid). Compos. Sci. Technol. 2018, 164, 44–50. [Google Scholar] [CrossRef]
- Tawiah, B.; Zhou, Y.Y.; Yuen, R.K.K.; Sun, J.; Fei, B. Microporous boron based intumescent macrocycle flame retardant for poly (lactic acid) with excellent UV protection. Chem. Eng. J. 2020, 402, 126209–126222. [Google Scholar] [CrossRef]
- Tang, G.; Wang, X.; Xing, W.Y.; Zhang, P.; Wang, B.B.; Hong, N.N.; Yang, W.; Hu, Y.; Song, L. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind. Eng. Chem. Res. 2012, 51, 12009–12016. [Google Scholar] [CrossRef]
- Yang, W.; Tawiah, B.; Yu, C.; Qian, Y.F.; Wang, L.L.; Yuen, A.C.Y.; Zhu, S.E.; Hu, E.Z.; Chen, T.B.Y.; Yu, B.; et al. Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Compos. Part A-Appl. S. 2018, 110, 227–236. [Google Scholar] [CrossRef]
- Costes, L.; Laoutid, F.; Dumazert, L.; Lopez-cuesta, J.M.; Brohez, S.; Delvosalle, C.; Dubois, P. Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polym. Degrad. Stabil. 2015, 119, 217–227. [Google Scholar] [CrossRef]
- Wen, X.; Gong, J.; Yu, H.; Liu, Z.; Wan, D.; Liu, J.; Tang, T. Catalyzing carbonization of poly(L-lactide) by nanosized carbon black combined with Ni2O3 for improving flame retardancy. J. Mater. Chem. 2012, 22, 19974–19980. [Google Scholar] [CrossRef]
- Jin, X.B.; Xiang, E.L.; Zhang, R.; Qin, D.C.; Jiang, M.L.; Jiang, Z.H. Halloysite nanotubes immobilized by chitosan/tannic acid complex as a green flame retardant for bamboo fiber/poly(lactic acid) composites. J. Appl. Polym. Sci. 2021, 138, 49621–49631. [Google Scholar] [CrossRef]
- Mu, X.W.; Yuan, B.H.; Hu, W.Z.; Qiu, S.L.; Song, L.; Hu, Y. Flame retardant and anti-dripping properties of polylactic acid/poly(bis(phenoxy) phosphazene)/expandable graphite composite and its flame retardant mechanism. RSC. Adv. 2015, 5, 76068–76078. [Google Scholar] [CrossRef]
- Wang, B.B.; Sheng, H.B.; Shi, Y.Q.; Hu, W.Z.; Hong, N.N.; Zeng, W.R.; Ge, H.; Yu, X.J.; Song, L.; Hu, Y. Recent advances for microencapsulation of flame retardant. Polym. Degrad. Stabil. 2015, 143, 96–109. [Google Scholar] [CrossRef]
- Jimenez, M.; Bellayer, S.; Revel, B.; Duquesne, S.; Bourbigot, S. Comprehensive study of the influence of different aging scenarios on the fire protective behavior of an epoxy based intumescent coating. Ind. Eng. Chem. Res. 2013, 52, 729–743. [Google Scholar] [CrossRef]
- Chen, C.; Gu, X.Y.; Jin, X.D.; Sun, J.; Zhang, S. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites. Carbohyd. Polym. 2017, 157, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.C.; He, S.; Zuo, X.H.; Xue, Y.; Chen, Z.H.; Chang, C.C.; Weil, E.; Rafailovich, M. Incorporation of cellulose with adsorbed phosphates into poly (lactic acid) for enhanced mechanical and flame retardant properties. Polym. Degrad. Stabil. 2017, 144, 24–32. [Google Scholar] [CrossRef]
- Feng, J.X.; Su, S.P.; Zhu, J. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polym. Adv. Technol. 2011, 22, 1115–1122. [Google Scholar] [CrossRef]
- Réti, C.; Casetta, M.; Duquesne, S.; Bourbigot, S.; Delobel, R. Flammability properties of intumescent PLA including starch and lignin. Polym. Adv. Technol. 2008, 19, 628–635. [Google Scholar] [CrossRef]
- Wang, X.F.; Xing, W.Y.; Wang, B.B.; Wen, P.Y.; Song, L.; Hu, Y.; Zhang, P. Comparative study on the effect of beta-cyclodextrin and polypseudorotaxane as carbon sources on the thermal stability and flame retardance of polylacticacid. Ind. Eng. Chem. Res. 2013, 52, 3287–3294. [Google Scholar] [CrossRef]
- Van den Broek, L.A.M.; Knoop, R.J.I.; Kappen, F.H.J.; Boeriu, C.G. Chitosan films and blends for packaging material. Carbohyd. Polym. 2015, 116, 237–242. [Google Scholar] [CrossRef]
- Chen, R.; Luo, Z.J.; Yu, X.J.; Tang, H.; Zhou, Y.; Zhou, H. Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin. Carbohyd. Polym. 2020, 245, 116530–116536. [Google Scholar] [CrossRef]
- Liu, X.D.; Gu, X.Y.; Sun, J.; Zhang, S. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohyd. Polym. 2017, 167, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Laufer, G.; Kirkland, C.; Morgan, A.B.; Grunlan, J.C. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 2012, 13, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Laufer, G.; Kirkland, C.; Morgan, A.B.; Grunlan, J.C. Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. ACS. Macro. Lett. 2013, 2, 361–365. [Google Scholar] [CrossRef]
- Pan, H.F.; Pan, Y.; Wang, W.; Song, L.; Hu, Y.; Liew, K.M. Synergistic effect of layer-by-layer assembled thin films based on clay and carbon nanotubes to reduce the flammability of flexible polyurethane foam. Ind. Eng. Chem. Res. 2014, 53, 14315–14321. [Google Scholar] [CrossRef]
- Jimenez, M.; Guin, T.; Bellayer, S.; Dupretz, R.; Bourbigot, S.; Grunlan, J.C. Microintumescent mechanism of flame-retardant water-based chitosan-ammonium polyphosphate multilayer nanocoating on cotton fabric. J. Appl. Polym. Sci. 2016, 32, 43783–43793. [Google Scholar] [CrossRef]
- Li, Y.J.; Qiu, S.; Sun, J.; Ren, Y.J.; Wang, S.H.; Wang, X.G.; Wang, W.J.; Li, H.F.; Fei, B.; Gu, X.Y.; et al. A new strategy to prepare fully bio-based poly(lactic acid) composite with high flame retardancy, UV resistance, and rapid degradation in soil. Chem. Eng. J. 2022, 428, 131979–131990. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Tawiah, B.; Noor, N.; Zhang, Z.; Sun, J.; Yuen, R.K.K.; Fei, B. A facile and sustainable approach for simultaneously flame retarded, UV protective and reinforced poly(lactic acid) composites using fully bio-based complexing couples. Compos. Part. B-Eng. 2021, 215, 108833–108843. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Kundu, C.K.; Wang, X.; Song, L.; Hu, Y. Bio-inspired and dual interaction-based layer-by-layer assembled coatings for superior flame retardancy and hydrophilicity of polyamide 6.6 textiles. Eur. Polym. J. 2021, 147, 110320–110332. [Google Scholar] [CrossRef]
- Goda, E.S.; Abu Elella, M.H.; Hong, S.E.; Pandit, B.; Yoon, K.R.; Gamal, H. Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose 2021, 28, 5087–5105. [Google Scholar] [CrossRef]
- Malucelli, G. Flame-retardant systems based on chitosan and its derivatives: State of the art and perspectives. Molecules 2020, 25, 4046. [Google Scholar] [CrossRef]
- Sun, J.; Gu, X.Y.; Zhang, S.; Coquelle, M.; Bourbigot, S.; Duquesne, S.; Casetta, M. Improving the flame retardancy of polyamide 6 by incorporating hexachlorocyclo triphosphazene modified MWNT. Polym. Adv. Technol. 2014, 25, 1099–1107. [Google Scholar] [CrossRef]
- Jin, X.D.; Cui, S.P.; Sun, S.B.; Gu, X.Y.; Li, H.F.; Liu, X.D.; Tang, W.F.; Sun, J.; Bourbigot, S.; Zhang, S. The preparation of a bio-polyelectrolytes based core-shell structure and its application in flame retardant polylactic acid composites. Compos. Part A-Appl. S. 2019, 124, 105485–105495. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, X.D.; Gu, X.Y.; Chen, C.; Li, H.F.; Zhang, Z.W.; Sun, J. The preparation of fully bio-based flame retardant poly(lactic acid) composites containing casein. J. Appl. Polym. Sci. 2018, 135, 46599–446608. [Google Scholar] [CrossRef]
- Jin, X.D.; Cui, S.P.; Sun, S.B.; Gu, X.Y.; Li, H.F.; Sun, J.; Zhang, S.; Bourbigot, S. The Preparation of an intumescent flame retardant by ion exchange and its application in polylactic acid. ACS. Appl. Polym. Mater. 2019, 1, 755–764. [Google Scholar] [CrossRef]
- Camino, G.; Costa, L.; Trossarelli, L. Study of the mechanism of intumescence in fire retardant polymers: Part I-Thermal degradation of ammonium polyphosphate-pentaerythritol mixtures. Polym. Degrad. Stabil. 1984, 6, 243–252. [Google Scholar] [CrossRef]
- Shao, Z.B.; Deng, C.; Tan, Y.; Chen, M.J.; Chen, L.; Wang, Y.Z. Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate. Polym. Degrad. Stabil. 2014, 106, 88–96. [Google Scholar] [CrossRef]
- Chen, W.H.; Liu, P.J.; Liu, Y.; Wang, Q.; Duan, W.F. Flame-retardant and thermal degradation mechanisms of melamine polyphosphate in combination with aluminum phosphinate in glass fabric-reinforced epoxy resin. Polym. Compos. 2019, 40, 3199–3208. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Wang, Q.; Wilkie, C.; O’Hare, D. Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2014, 2, 10996–11016. [Google Scholar] [CrossRef]
- Shao, Z.B.; Deng, C.; Tan, Y.; Yu, L.; Chen, M.J.; Chen, L.; Wang, Y.Z. Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J. Mater. Chem. A 2014, 2, 13955–13965. [Google Scholar] [CrossRef]
- Bertalan, G.; Marosi, G.; Anna, P.; Ravadits, I.; Csontos, I.; Tóth, A. Role of interface modification in filled and flame-retarded polymer systems. Solid. State. Ion. 2001, 141, 211–215. [Google Scholar] [CrossRef]
- Wang, J.S.; Wang, D.Y.; Liu, Y.; Ge, X.G.; Wang, Y.Z. Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J. Appl. Polym. Sci. 2008, 108, 2644–2653. [Google Scholar] [CrossRef]
- Bourbigot, S.; Bra, M.L.; Delobel, R.; Gengenmbre, L. XPS study of an intumescent coating: II. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent. Appl. Surf. Sci. 1997, 120, 15–29. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, Y.; Tang, X.L.; Zhou, Y.; Li, X.N.; Kandola, B.K.; Fang, Z.P. Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: A novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer 2017, 108, 361–371. [Google Scholar] [CrossRef]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R. 2009, 63, 100–125. [Google Scholar] [CrossRef]
- Bourbigot, S.; Bras, L.M.; Duquesne, S.; Rochery, M. Recent advances for intumescent polymers. Macromol. Mater. Eng. 2004, 289, 499–511. [Google Scholar] [CrossRef]
- Yan, Y.X.; Gu, X.Y.; Li, L.M.; Li, H.F.; Sun, J.; Zhang, S. Preparation and characterization of intumescent flame retardant biodegradable poly(lactic acid) nanocomposites based on sulfamic acid intercalated layered double hydroxides. Fiber. Polym. 2017, 18, 2060–2069. [Google Scholar] [CrossRef]
Samples | PLA (wt%) | Chitin (wt%) | APP (wt%) | MEL (wt%) | LOI (%) | UL-94 |
---|---|---|---|---|---|---|
PLA | 100 | 0 | 0 | 0 | 20.0 | NR b |
C15 | 85 | 15 | 0 | 0 | 24.1 | NR |
C20 | 80 | 20 | 0 | 0 | 24.5 | NR |
A1C1M0 a | 80 | 10 | 10 | 0 | 27.2 | V-2 |
A0C1M1 | 80 | 0 | 10 | 10 | 19.6 | V-2 |
A2C1M1 | 80 | 5 | 10 | 5 | 26.0 | V-0 |
A1C2M1 | 80 | 10 | 5 | 5 | 22.3 | V-2 |
Samples | pHRR (kW/m2) | TTI (s) | THR (MJ/m2) | Mean COY (kg/kg) | TSP (m2) | Char Residues (%) |
---|---|---|---|---|---|---|
PLA | 514 ± 36 | 37 | 71 ± 5 | 0.016 | 0.16 | 0.0 |
A1C1M0 | 282 ± 20 | 36 | 39 ± 3 | 0.026 | 1.75 | 11.3 |
A2C1M1 | 251 ± 17 | 34 | 37 ± 3 | 0.021 | 0.48 | 16.6 |
Samples | C (wt%) | O (wt%) | N (wt%) | P (wt%) |
---|---|---|---|---|
C20 | 81.35 | 18.65 | - | - |
A1C1M0 | 49.90 | 47.21 | - | 2.89 |
A2C1M1 | 39.16 | 36.60 | 14.44 | 9.80 |
Samples | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
PLA | 59.3 ± 3.2 | 4.1 ± 0.3 |
C20 | 42.7 ± 2.9 | 2.5 ± 0.2 |
A1C1M0 | 40.1 ± 2.1 | 2.4 ± 0.1 |
A2C1M1 | 38.9 ± 2.5 | 2.1 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Cui, S.; Sun, S.; Sun, J.; Zhang, S. The Preparation and Characterization of Polylactic Acid Composites with Chitin-Based Intumescent Flame Retardants. Polymers 2021, 13, 3513. https://doi.org/10.3390/polym13203513
Jin X, Cui S, Sun S, Sun J, Zhang S. The Preparation and Characterization of Polylactic Acid Composites with Chitin-Based Intumescent Flame Retardants. Polymers. 2021; 13(20):3513. https://doi.org/10.3390/polym13203513
Chicago/Turabian StyleJin, Xiaodong, Suping Cui, Shibing Sun, Jun Sun, and Sheng Zhang. 2021. "The Preparation and Characterization of Polylactic Acid Composites with Chitin-Based Intumescent Flame Retardants" Polymers 13, no. 20: 3513. https://doi.org/10.3390/polym13203513
APA StyleJin, X., Cui, S., Sun, S., Sun, J., & Zhang, S. (2021). The Preparation and Characterization of Polylactic Acid Composites with Chitin-Based Intumescent Flame Retardants. Polymers, 13(20), 3513. https://doi.org/10.3390/polym13203513