Influence of Toothbrush Abrasion and Surface Treatments on Roughness and Gloss of Polymer-Infiltrated Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Gloss
2.2. Surface Roughness
2.3. Simulated Toothbrushing
2.4. Statistical Analysis
3. Results
3.1. Surface Gloss (ΔE*SCE-SCI)
3.2. Surface Roughness (Ra)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gracis, S.; Thompson, V.P.; Ferencz, J.L.; Silva, N.R.; Bonfante, E.A. A New Classification System for All-Ceramic and Ceramic-like Restorative Materials. Int. J. Prosthodont. 2016, 28, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, N.C.; Burgess, J.O. Gloss and Stain Resistance of Ceramic-Polymer CAD/CAM Restorative Blocks. J. Esthet. Restor. Dent. 2016, 28, S40–S45. [Google Scholar] [CrossRef] [PubMed]
- Mörmann, W.H.; Stawarczyk, B.; Ender, A.; Sener, B.; Attin, T. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and martens hardness. J. Mech. Behav. Biomed. Mater. 2013, 20, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Tribst, J.P.; Dal Piva, A.M.; Werner, A.; Anami, L.C.; Bottino, M.A.; Kleverlaan, C.J. Durability of staining and glazing on a hybrid ceramics after the three-body wear. J. Mech. Behav. Biomed. Mater. 2020, 109, 103856. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Elsahn, N.A.; Sheela, S.; Gaintantzopoulou, M.D. Adhesive luting to hybrid ceramic and resin composite CAD/CAM Blocks:Er:YAG Laser versus chemical etching and micro-abrasion pretreatment. J. Prosthodont. Res. 2021, 65, 225–234. [Google Scholar] [CrossRef]
- Say, E.C.; Yurdagüven, H.; Yaman, B.C.; Özer, F. Surface roughness and morphology of resin composites polished with two-step polishing systems. Dent. Mater. J. 2014, 33, 332–342. [Google Scholar]
- Awad, D.; Stawarczyk, B.; Liebermann, A.; Ilie, N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.; Forjanic, M.; Rousson, V. Surface roughness and gloss of dental materials as a function of force and polishing time in vitro. Dent. Mater. 2006, 22, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, H.; Saiki, O.; Nogawa, H.; Hiraba, H.; Okazaki, T.; Matsumura, H. Surface roughness and gloss of current CAD/CAM resin composites before and after toothbrush abrasion. Dent. Mater. J. 2015, 34, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Kamonkhantikul, K.; Arksornnukit, M.; Lauvahutanon, S.; Takahashi, H. Toothbrushing alters the surface roughness and gloss of composite resin CAD/CAM blocks. Dent. Mater. J. 2016, 35, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Lefever, D.; Perakis, N.; Roig, M.; Krejci, I.; Ardu, S. The effect of toothbrushing on surface gloss of resin composites. Am. J. Dent. 2012, 25, 54–58. [Google Scholar]
- Maawadh, A.M.; Almohareb, T.; Al-Hamdan, R.S.; Al Deeb, M.; Naseem, M.; Alhenaki, A.M.; Vohra, F.; Abduljabbar, T. Repair strength and surface topography of lithium disilicate and polymer-infiltrated ceramics with LLLT and photodynamic therapy in comparison to hydrofluoric acid. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020966938. [Google Scholar] [PubMed]
- Şen, N.; Tuncelli, B.; Göller, G. Surface deterioration of monolithic CAD/CAM restorative materials after artificial abrasive toothbrushing. J. Adv. Prosthodont. 2018, 10, 271–278. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.; Kreplak, L.; Rueggeberg, F.A.; Labrie, D.; Shimokawa, C.A.K.; Price, R.B. Effect of toothbrushing on gloss retention and surface roughness of five bulk-fill resin composites. J. Esthet. Restor. Dent. 2018, 30, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Ereifej, N.S.; Oweis, Y.; Eliades, G. The Effect of Polishing Technique on 3-D Surface Roughness and Gloss of Dental Restorative Resin Composites. Oper. Dent. 2012, 38, E9–E20. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.M.; Doria, J.; da Silva, J.d.J.R.; Santos, G.V.; Guimaraes, J.G.A.; Poskus, L.T. Longitudinal evaluation of simulated toothbrushing on the roughness and optical stability of microfilled, microhybrid and nanofilled resin-based composites. J. Dent. 2013, 41, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Lefever, D.; Krejci, I.; Ardu, S. Laboratory evaluation of the effect of toothbrushing on surface gloss of resin composites. Am. J. Dent. 2014, 27, 42–46. [Google Scholar] [PubMed]
- Eisenburger, M.; Addy, M.; Hughes, J.; Shellis, R. Effect of Time on the Remineralisation of Enamel by Synthetic Saliva after Citric Acid Erosion. Caries Res. 2001, 35, 211–215. [Google Scholar] [CrossRef]
- Alrahlah, A.; Khan, R.; Al-Odayni, A.-B.; Saeed, W.S.; Bautista, L.S.; Vohra, F. Evaluation of Synergic Potential of rGO/SiO2 as Hybrid Filler for BisGMA/TEGDMA Dental Composites. Polymers 2020, 12, 3025. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, U.; Sancakli, H.S.; Yildiz, E. The effect of one-step and multi-step polishing systems on the surface roughness and microhardness of novel resin composites. Eur. J. Dent. 2012, 6, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Pala, K.; Tekçe, N.; Tuncer, S.; Serim, M.E.; Demirci, M. Evaluation of the surface hardness, roughness, gloss and color of composites after different finishing/polishing treatments and thermocycling using a multitechnique approach. Dent. Mater. J. 2016, 35, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Babbar, A.; Jain, V.; Gupta, D. Enhancement of surface roughness for brittle material during rotary ultrasonic machining. In Proceedings of the MATEC Web of Conferences, Bandung, Indonesia, 18 April 2018; EDP Sciences: Les Ulis, France, 2018; Volume 249, p. 01006. [Google Scholar]
- Gönülol, N.; Yılmaz, F. The effects of finishing and polishing techniques on surface roughness and color stability of nanocomposites. J. Dent. 2012, 40, e64–e70. [Google Scholar] [CrossRef]
- Özarslan, M.M.; Büyükkaplan, U.Ş.; Barutcigil, Ç.; Arslan, M.; Türker, N.; Barutcigil, K. Effects of different surface finishing procedures on the change in surface roughness and color of a polymer infiltrated ceramic network material. J. Adv. Prosthodont. 2016, 8, 16–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trauth, K.G.S.; Godoi, A.P.; Colucci, V.; Corona, S.A.M.; Catirse, A.B.C.E.B. The influence of mouthrinses and simulated toothbrushing on the surface roughness of a nanofilled composite resin. Braz. Oral Res. 2012, 26, 209–214. [Google Scholar] [CrossRef]
- Can Say, E.; Yurdagüven, H.; Malkondu, Ö.; Ünlü, N.; Soyman, M.; Kazazoğlu, E. The effect of prophylactic polishing pastes on surface roughness of indirect restorative materials. Sci. World J. 2014, 2014, 962764. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Jin, J.; Nikaido, T.; Tagami, J.; Hickel, R.; Kunzelmann, K.-H. Surface characterization of current composites after toothbrush abrasion. Dent. Mater. J. 2013, 32, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebon, N.; Tapie, L.; Vennat, E.; Mawussi, B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J. Prosthet. Dent. 2015, 114, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Dal Piva, A.M.D.O.; Bottino, M.A.; Anami, L.C.; Werner, A.; Kleverlaan, C.J.; Lo Giudice, R.; Famà, F.; Silva-Concilio, L.R.D.; Tribst, J.P.M. ToothbrushingWear Resistance of Stained CAD/CAM Ceramics. Coatings 2021, 11, 224. [Google Scholar] [CrossRef]
- Bollenl, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
Material | Symbol | Shade/Block | Manufacturer | Composition |
---|---|---|---|---|
Vitablocs Mark II | VM2 | (2M2/l14) | VITA Zahnfabrik (Bad Sackingen, Germany) | >20 wt.% feldspathic particles (average size of the particle 4 μm). 80 wt.% of the glass-matrix |
Lava Ultimate Restorative | LU | (A2-HT/14L) | 3M ESPE (MN, USA) | 80 wt.% (65 vol%) of nanoceramic particles containing zirconia filler (4-11 nm), silica filler (20 nm) and aggregated zirconia/silica cluster filler) 20 wt.% (35 vol%) of highly cross-linked (methacrylate-based) polymer matrix |
Vita Enamic | EN | (2M2-HT/Em-14) | Vita Zahnfabrik (Bad Sackingen, Germany) | 86 wt.% of feldspathic ceramic base 14 wt.% of acrylate polymer networks (infiltrated into feldspathic ceramic base) |
Shofu HC | SH | (A2-HT/14L) | Shofu Inc (Kyoto, Kyoto, Japan) | 61 wt.% of silica-powder, zirconium silicate and micro fumed silica mixture 39 wt.% mixture of UDMA and TEGDMA |
Crystal Ultra | CU | C-Block 15,5 x38.8 A2 | Digital Dental (Scottsdale, AZ, USA) | 70 wt.% of ceramic-like inorganic silicate glass filler particles (average particle size 0.8 mm (range 0.2-10.0 mm)) 30 wt.% of highly cross-linked polymer blends (Bis-GMA, UDMA, and BUDMA) |
Group | Instruments and Technique |
---|---|
SH, LU and CU groups | Each surface was coated with an adhesive (20 s) (Scotchbond Universal Adhesive; 3M ESPE, MN, USA) followed by air drying (5 s) and light polymerization (20 s) (Elipar Freelight 2, 3M ESPE, MN, USA) |
EN group | Each block was etched with hydrofluoric acid (5%) for 60 s and rinsed for 15 s. Preceding the etching, the surface residue was cleansed with a surface cleaner (VitaVM LC Cleaner; VITA Zahnfabrik, Bad Sackingen, Germany) and silanized (Ceramic Primer II; GC Corp, Tokyo, Japan). The glazing agent (Vita Enamic Glaze; VITA Zahnfabrik, Bad Sackingen, Germany) was lastly applied and polymerized as previously mentioned |
VM2 group | The glaze powder (Vita Akzent Plus Glaze Powder, VITA Zahnfabrik, Bad Sackingen, Germany) is mixed with the liquid (Vita Akzent Plus Glaze Fluid, (VITA Zahnfabrik Bad Sackingen, Germany) and applied using a microbrush. Consequently, the surface glaze was fired at 4-min heating cycle with 80°C/min temp increase rate; 950°C firing temp for 1 min. |
Study Groups | Stained-Water ΔE | Stained-Acid ΔE | Polished-Water ΔE | Polished-Acid ΔE | p Value $ | Post Hoc Comparison § |
---|---|---|---|---|---|---|
VM | 3.03 (0.35) | 2.99 (0.42) * | 2.2 (0.51) * | 2.2 (0.68) * | <0.01 | A |
LU | 3.8 (0.55) | 3.5 (0.59) | 3.7 (0.85) | 3.4 (0.21) | 0.616 | B |
EN | 4.27 (0.84) | 4.3 (1.00) * | 3.5 (0.18) | 3.5 (0.35) | <0.01 | B |
SH | 2.6 (0.26) * | 2.04 (0.42) | 2.7 (0.30) * | 2.6 (0.41) | 0.053 | A |
CU | 4.3 (0.47) | 4.2 (0.76) * | 3.4 (0.33) * | 3.77 (0.17) * | <0.01 | B |
Study Groups | VM (ΔE) | LU (ΔE) | EN (ΔE) | SH (ΔE) | CU (ΔE) | p Value $ | Post Hoc Comparison § |
---|---|---|---|---|---|---|---|
Stained—Water | 3.03 (0.35) | 3.8 (0.55) | 4.27 (0.84) | 2.61 (0.26) * | 4.31 (0.47) | <0.001 | A |
Stained—Acid | 2.99 (0.42) * | 3.5 (0.59) | 4.30 (1.00) * | 2.04 (0.42) | 4.23 (0.76) * | <0.001 | A |
Polished—Water | 2.20 (0.51) * | 3.7 (0.85) | 3.50 (0.18) | 2.70 (0.30) * | 3.40 (0.33) * | <0.001 | A |
Polished—Acid | 2.23 (0.68) * | 3.4 (0.21) | 3.53 (0.35) | 2.64 (0.41) | 3.77 (0.17) * | <0.01 | A |
Overall Mean | 2.61 (0.49) * | 3.65 (0.55) | 3.91 (0.59) | 2.49 (0.34) | 3.92 (0.43) * | <0.01 | / |
Mean | Stained-Water (Ra, μm) | Stained-Acid (Ra, μm) | Polished-Water (Ra, μm) | Polished-Acid (Ra, μm) | p Value $ | Post Hoc Comparison § |
---|---|---|---|---|---|---|
VM | 0.16 (0.04) | 0.16 (0.047) | 0.13 (0.039) * | 0.134 (0.038) * | 0.78 | A |
LU | 0.29 (0.076) * | 0.33 (0.080) * | 0.197 (0.04) * | 0.19 (0.48) * | 0.01 | B |
EN | 0.29 (0.04) * | 0.28 (0.06) * | 0.16 (0.05) * | 0.19 (0.04) * | 0.01 | B |
SH | 0.36 (0.08) * | 0.40 (0.99) * | 0.21 (0.044) * | 0.21 (0.022) * | 0.01 | B |
CU | 0.31 (0.05) * | 0.37 (0.088) * | 0.20 (0.05) * | 0.21 (0.04) * | 0.01 | B |
Mean | VM (Ra, μm) | LU (Ra, μm) | EN (Ra, μm) | SH (Ra, μm) | CU (Ra, μm) | p Value $ | Post Hoc Comparison § |
---|---|---|---|---|---|---|---|
Stained—Water | 0.16 (0.04) | 0.29 (0.076) * | 0.29 (0.04) * | 0.36 (0.08) * | 0.31 (0.05) * | 0.01 | A |
Stained—Acid | 0.16 (0.047) | 0.33 (0.080) * | 0.28 (0.06) * | 0.40 (0.99) * | 0.37 (0.088) * | 0.01 | A |
Polished—Water | 0.13 (0.039) * | 0.197 (0.04) * | 0.16 (0.05) * | 0.21 (0.044) * | 0.20 (0.05) * | 0.025 | B |
Polished—Acid | 0.134 (0.038) * | 0.19 (0.48) * | 0.19 (0.04) * | 0.21 (0.022) * | 0.21 (0.04) * | 0.016 | B |
Overall Mean | 0.145 (0.041) | 0.25 (0.061) | 0.23 (0.048) | 0.29 (0.061) | 0.27 (0.057) | <0.01 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labban, N.; Al Amri, M.D.; Alnafaiy, S.M.; Alhijji, S.M.; Alenizy, M.A.; Iskandar, M.; Feitosa, S. Influence of Toothbrush Abrasion and Surface Treatments on Roughness and Gloss of Polymer-Infiltrated Ceramics. Polymers 2021, 13, 3694. https://doi.org/10.3390/polym13213694
Labban N, Al Amri MD, Alnafaiy SM, Alhijji SM, Alenizy MA, Iskandar M, Feitosa S. Influence of Toothbrush Abrasion and Surface Treatments on Roughness and Gloss of Polymer-Infiltrated Ceramics. Polymers. 2021; 13(21):3694. https://doi.org/10.3390/polym13213694
Chicago/Turabian StyleLabban, Nawaf, Mohammad D. Al Amri, Sarah M. Alnafaiy, Saleh M. Alhijji, Mohammad A. Alenizy, Mounir Iskandar, and Sabrina Feitosa. 2021. "Influence of Toothbrush Abrasion and Surface Treatments on Roughness and Gloss of Polymer-Infiltrated Ceramics" Polymers 13, no. 21: 3694. https://doi.org/10.3390/polym13213694
APA StyleLabban, N., Al Amri, M. D., Alnafaiy, S. M., Alhijji, S. M., Alenizy, M. A., Iskandar, M., & Feitosa, S. (2021). Influence of Toothbrush Abrasion and Surface Treatments on Roughness and Gloss of Polymer-Infiltrated Ceramics. Polymers, 13(21), 3694. https://doi.org/10.3390/polym13213694