Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water
Abstract
:1. Introduction
1.1. Marine Plastic Pollution
1.2. Polyvinyl Alcohol
1.3. Plastic Biodegradation
1.4. Toxicity of Plastics
2. Materials and Methods
2.1. Tested Materials
2.2. Biodegradation Study
2.3. Toxicity Test
3. Results and Discussion
3.1. Biodegradability Test
3.2. Toxicity Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PlasticsEurope. Plastics—The Facts 2020. An Analysis in European Plastic Production, Demand and Waste Data. PlasticEurope 2020, 1–64. [Google Scholar]
- Napper, I.E.; Thompson, R.C. Plastic Debris in the Marine Environment: History and Future Challenges. Glob. Chall. 2020, 1900081, 1–9. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Tanaka, K.; Takada, H. Microplastic Fragments and Microbeads in Digestive Tracts of Planktivorous Fish from Urban Coastal Waters. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Dick Vethaak, A.; Lavorante, B.R.B.O.; Lundebye, A.K.; Guilhermino, L. Marine Microplastic Debris: An Emerging Issue for Food Security, Food Safety and Human Health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef]
- Beiras, R.; Schönemann, A.M. Currently Monitored Microplastics Pose Negligible Ecological Risk to the Global Ocean. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Walker, T.R. (Micro) Plastics and the UN Sustainable Development Goals. Curr. Opin. Green Sustain. Chem. 2021, 30, 100497. [Google Scholar] [CrossRef]
- European Bioplastics. Bioplastics Market Data 2019. Available online: https://www.european-bioplastics.org/market/ (accessed on 1 September 2021).
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Finch, C.A. Polyvinyl Alcohol, Properties and Applications. J. Polym. Sci. Polym. Lett. Ed. 1974, 12, 105–106. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Makwana, S.H. Development of Active, Water-Resistant Carboxymethyl Cellulose-Poly Vinyl Alcohol-Aloe Vera Packaging Film. Carbohydr. Polym. 2020, 227, 115303. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; Solaro, R. Biodegradation of Poly(Vinyl Alcohol) Based Blown Films under Different Environmental Conditions. Polym. Degrad. Stab. 1999, 64, 305–312. [Google Scholar] [CrossRef]
- Xu, S.; Malik, M.A.; Qi, Z.; Huang, B.T.; Li, Q.; Sarkar, M. Influence of the PVA Fibers and SiO2 NPs on the Structural Properties of Fly Ash Based Sustainable Geopolymer. Constr. Build. Mater. 2018, 164, 238–245. [Google Scholar] [CrossRef]
- DeMerlis, C.C.; Schoneker, D.R. Review of the Oral Toxicity of Poly Vinyl Alcohol (PVA). Food Chem. Toxicol. 2003, 41, 319–326. [Google Scholar] [CrossRef]
- Muppalaneni, S. Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. J. Dev. Drugs 2013, 2, 2329–6631. [Google Scholar] [CrossRef] [Green Version]
- PVOH Polymers LTD. Soluble Polymers For Innovation. Available online: https://www.pvohpolymers.co.uk/fisheries/ (accessed on 27 October 2021).
- Porter, J.J.; Snider, E.H. Long Term Biodegradability of Textile Chemicals. J. Water Pollut. Control Fed. 1976, 48, 2198–2210. [Google Scholar]
- Wu, H.F.; Yue, L.Z.; Jiang, S.L.; Lu, Y.Q.; Wu, Y.X.; Wan, Z.Y. Biodegradation of Polyvinyl Alcohol by Different Dominant Degrading Bacterial Strains in a Baffled Anaerobic Bioreactor. Water Sci. Technol. 2019, 79, 2005–2012. [Google Scholar] [CrossRef]
- Watanabe, Y.; Morita, M.; Hamada, N.; Tsujisaca, Y. Formation of Hydrogen Peroxide by a Polyvinyl Degrading Alcohol Enzyme. Agr. Biol. 1975, 39, 2447–2448. [Google Scholar]
- Suzuki, T.; Ichihara, Y.; Yamada, M.; Tonomura, K. Some Characteristics of Pseudomonas O–3 Which Utilizes Polyvinyl Alcohol. Agric. Biol. Chem. 1973, 37, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of Poly (Vinyl Alcohol) Based Materials. Prog. Polym. Sci. 2003, 28, 963–1404. [Google Scholar] [CrossRef]
- Yamatsu, A.; Matsumi, R.; Atomi, H.; Imanaka, T. Isolation and Characterization of a Novel Poly (Vinyl Alcohol)-Degrading Bacterium, Sphingopyxis Sp. PVA3. Appl. Microbiol. Biotechnol. 2006, 72, 804–811. [Google Scholar] [CrossRef]
- Rujnić Havstad, M.; Juroš, L.; Katančić, Z.; Pilipović, A. Influence of Home Composting on Tensile Properties of Commercial Biodegradable Plastic Films. Polymers 2021, 13, 2785. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Environmental Performance of Bio-Based and Biodegradable Plastics: The Road Ahead. Chem. Soc. Rev. 2017, 46, 6855–6871. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Laforsch, C.; Greiner, A.; Agarwal, S. Fate of So-Called Biodegradable Polymers in Seawater and Freshwater. Glob. Chall. 2017, 1, 1700048. [Google Scholar] [CrossRef]
- Thellen, C.; Coyne, M.; Froio, D.; Auerbach, M.; Wirsen, C.; Ratto, J.A. A Processing, Characterization and Marine Biodegradation Study of Melt-Extruded Polyhydroxyalkanoate (PHA) Films. J. Polym. Environ. 2008, 16, 1–11. [Google Scholar] [CrossRef]
- Accinelli, C.; Saccà, M.L.; Mencarelli, M.; Vicari, A. Deterioration of Bioplastic Carrier Bags in the Environment and Assessment of a New Recycling Alternative. Chemosphere 2012, 89, 136–143. [Google Scholar] [CrossRef]
- Tachibana, K.; Urano, Y.; Numata, K. Biodegradability of Nylon 4 Film in a Marine Environment. Polym. Degrad. Stab. 2013, 98, 1847–1851. [Google Scholar] [CrossRef]
- Tosin, M.; Weber, M.; Siotto, M.; Lott, C.; Innocenti, F.D. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions. Front. Microbiol. 2012, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Beiras, R.; Durán, I.; Parra, S.; Urrutia, M.B.; Besada, V.; Bellas, J.; Viñas, L.; Sánchez-Marín, P.; González-Quijano, A.; Franco, M.A.; et al. Linking Chemical Contamination to Biological Effects in Coastal Pollution Monitoring. Ecotoxicology 2012, 21, 9–17. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Galloway, T.S. The Impact of Polystyrene Microplastics on Feeding, Function and Fecundity in the Marine Copepod Calanus Helgolandicus. Environ. Sci. Technol. 2015, 49, 1130–1137. [Google Scholar] [CrossRef]
- Burns, E.E.; Boxall, A.B.A. Microplastics in the Aquatic Environment: Evidence for or against Adverse Impacts and Major Knowledge Gaps. Environ. Toxicol. Chem. 2018, 37, 2776–2796. [Google Scholar] [CrossRef] [Green Version]
- Cormier, B.; Gambardella, C.; Tato, T.; Perdriat, Q.; Costa, E.; Veclin, C.; Le Bihanic, F.; Grassl, B.; Dubocq, F.; Kärrman, A.; et al. Chemicals Sorbed to Environmental Microplastics Are Toxic to Early Life Stages of Aquatic Organisms. Ecotoxicol. Environ. Saf. 2021, 208, 111665. [Google Scholar] [CrossRef]
- Beiras, R.; Verdejo, E.; Campoy-López, P.; Vidal-Liñán, L. Aquatic Toxicity of Chemically Defined Microplastics Can Be Explained by Functional Additives. J. Hazard. Mater. 2021, 406, 124338. [Google Scholar] [CrossRef]
- Druege, U. Ethylene and Plant Responses to Abiotic Stress. In Ethylene Action in Plants; Springer: Berlin/Heidelberg, Germany, 2006; pp. 81–118. [Google Scholar]
- González-Pleiter, M.; Tamayo-Belda, G.; Pulido-Reyes, G.A.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Secondary Nanoplastics Released from a Biodegradable Microplastic Severely Impact Freshwater Environments. Environ. Sci. Process. Impacts 2019, 6, 1382–1392. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of Glycerol Plasticizer Loading on the Physical, Mechanical, Thermal, and Barrier Properties of Arrowroot (Maranta Arundinacea) Starch Biopolymers. Sci. Rep. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization). ISO 14851: Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in an Aqueous Medium—Method by Measuring the Oxygen Demand in a Closed Respirometer; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Redfield, A.C. The biological control of chemical factors in the environment. Am. Sci. 1958, 46, 205–221. [Google Scholar]
- Tortell, P.D.; Maldonado, M.T.; Granger, J.; Price, N.M. Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol. Ecol. 1999, 29, 1–11. [Google Scholar] [CrossRef]
- Beiras, R.; Tato, T.; López-Ibáñez, S. A 2-Tier standard method to test the toxicity of microplastics in marine water using Paracentrotus lividus and Acartia clausi larvae. Environ Toxicol Chem. 2018, 38, 630–637. [Google Scholar] [CrossRef]
- Lorenzo, J.I.; Nieto, O.; Beiras, R. Effect of Humic Acids on Speciation and Toxicity of Copper To Paracentrotus lividus larvae in seawater. Aquat. Toxicol. 2002, 58, 27–41. [Google Scholar] [CrossRef]
- Saco-Álvarez, L.; Durán, I.; Ignacio Lorenzo, J.; Beiras, R. Methodological Basis for the Optimization of a Marine Sea-Urchin Embryo Test (SET) for the Ecological Assessment of Coastal Water Quality. Ecotoxicol. Environ. Saf. 2010, 73, 491–499. [Google Scholar] [CrossRef]
- (ISO) International Organization for Standardization. ISO 19679: Determination of Aerobic Biodegradation of Non-Floating Plastic Materials in a Seawater/Sediment Interface—Method by Analysis of Evolved Carbon Dioxide; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- ASTM (American Society for Testing and Materials). D7991–15 Standard Test Method for Determining Aerobic Biodegradation of Plastics Buried in Sandy Marine Sediment under Controlled Laboratory Conditions; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Lin, C.C.; Lee, L.T.; Hsu, L.J. Degradation of Polyvinyl Alcohol in Aqueous Solutions Using UV-365 Nm/S2O82- Process. Int. J. Environ. Sci. Technol. 2014, 11, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Byrne, D.; Boeije, G.; Croft, I.; Hüttmann, G.; Luijkx, G.; Meier, F.; Parulekar, Y.; Stijntjes, G. Biodegradability of Polyvinyl Alcohol Based Film Used for Liquid Detergent Capsules. Tenside Surfactants Deterg. 2021, 58, 88–96. [Google Scholar] [CrossRef]
- Abdullah, Z.W.; Dong, Y. Biodegradable and Water Resistant Poly(Vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging. Front. Mater. 2019, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Reuschenbach, P.; Pagga, U.; Strotmann, U. A Critical Comparison of Respirometric Biodegradation Tests Based on OECD 301 and Related Test Methods. Water Res. 2003, 37, 1571–1582. [Google Scholar] [CrossRef]
- Wei, X.F.; Bohlén, M.; Lindblad, C.; Hedenqvist, M.; Hakonen, A. Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res. 2021, 15, 117123. [Google Scholar] [CrossRef]
- TUV AUSTRIA. Certification Scheme OK Biodegradable Water. Available online: https://www.tuv-at.be/green-marks/doc-center/ (accessed on 17 October 2021).
- Harrison, J.; Boardman, C.; O’Callaghan, K.; Delort, A.-M.; Song, J. Biodegradability standards for carrier bags and plastic films in aquatic environments: A critical review. R. Soc. Open Sci. 2018, 5, 171792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures. Off. J. Eur. Union 2008, 353. [Google Scholar]
- Arfsten, D.P.; Burton, D.T.; Fisher, D.J.; Callahan, J.; Wilson, C.L.; Still, K.R.; Spargo, B.J. Assessment of the aquatic and terrestrial toxicity of five biodegradable polymers. Environ. Res. 2004, 94, 198–210. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Short-Term Toxicity to Aquatic Invertebrates. Available online: https://echa.europa.eu/es/registration-dossier/-/registered-dossier/14481/6/2/4 (accessed on 27 August 2021).
- Perales, E.; García, C.B.; Lomba, L.; García, J.I.; Pires, E.; Sancho, M.C.; Navarro, E.; Giner, B. Comparative Ecotoxicity Study of Glycerol-Biobased Solvents. Environ. Chem. 2017, 14, 370–377. [Google Scholar] [CrossRef]
- Gu, Y.; Jérôme, F. Glycerol as a sustainable solvent for green chemistry. Green Chem. 2010, 12, 1127–1138. [Google Scholar] [CrossRef]
Reference | Brand | Hydrolysis, Mole % | Viscosity (cps) | % PVA | % Glycerol |
---|---|---|---|---|---|
PVA.029 | Selvol™ Polyvinyl Alcohol 205 | 87.00–89.00 | 5.2–6.2 | 85 | 15 |
PVA.030 | Exceval HR 3010 | 99.0–99.4 | 12.0–16.0 | 85 | 15 |
PVA.031 | PVA KURARAY POVALTM | 98.0–99.0 | 3.2–3.8 | 100 | 0 |
EC50 (mg/L) | TU | Toxicity |
---|---|---|
>10,000 | <1 | None |
2000–10,000 | 1 ≤ TU< 5 | Slight |
400–2000 | 5 ≤ TU< 25 | Relevant |
<400 | ≥25 | High |
Sample | NOEC (g/L) | LOEC (g/L) | TU | CE50 (mg/L) |
---|---|---|---|---|
PVA.029 | 1 | 3.33 | 2.3 | 4285 (1585–12164) |
PVA.030 | 1 | 3.33 | 2.2 | 4382 (3750–5017) |
PVA.031 | 3.33 | 10 | <1 | 2403.8 (1814.8–3773.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-López, O.; López-Ibáñez, S.; Beiras, R. Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water. Polymers 2021, 13, 3742. https://doi.org/10.3390/polym13213742
Alonso-López O, López-Ibáñez S, Beiras R. Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water. Polymers. 2021; 13(21):3742. https://doi.org/10.3390/polym13213742
Chicago/Turabian StyleAlonso-López, Olalla, Sara López-Ibáñez, and Ricardo Beiras. 2021. "Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water" Polymers 13, no. 21: 3742. https://doi.org/10.3390/polym13213742
APA StyleAlonso-López, O., López-Ibáñez, S., & Beiras, R. (2021). Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water. Polymers, 13(21), 3742. https://doi.org/10.3390/polym13213742