Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Die Preparation
2.2. Designing and Milling of Zirconia and PEEK Crowns
2.3. Cementation of the Crowns onto the Die
2.4. Chewing Simulation
2.5. Surface Wear of Samples Using a Laserscanner
2.6. Color Stability Using a Digital Spectrophotometer
2.7. Displacement of the Crown Using a Universal Testing Machine
2.8. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rokaya, D.; Srimaneepong, V.; Qin, J.; Siraleartmukul, K.; Siriwongrungson, V. Graphene oxide/silver nanoparticle coating produced by electrophoretic deposition improved the mechanical and tribological properties of niti alloy for biomedical applications. J. Nanosci. Nanotechnol. 2019, 19, 3804–3810. [Google Scholar] [CrossRef]
- Diabb, J.; Rodríguez, C.A.; Mamidi, N.; Sandoval, J.A.; Taha-Tijerina, J.; Martínez-Romero, O.; Elías-Zúñiga, A. Study of lubrication and wear in single point incremental sheet forming (spif) process using vegetable oil nanolubricants. Wear 2017, 376–377, 777–785. [Google Scholar] [CrossRef]
- Lee, A.; He, L.H.; Lyons, K.; Swain, M.V. Tooth wear and wear investigations in dentistry. J. Oral Rehabil. 2012, 39, 217–225. [Google Scholar] [CrossRef]
- Gkantidis, N.; Dritsas, K.; Ren, Y.; Halazonetis, D.; Katsaros, C. An accurate and efficient method for occlusal tooth wear assessment using 3D digital dental models. Sci. Rep. 2020, 10, 10103. [Google Scholar] [CrossRef] [PubMed]
- Gundugollu, Y.; Yalavarthy, R.S.; Krishna, M.H.; Kalluri, S.; Pydi, S.K.; Tedlapu, S.K. Comparison of the effect of monolithic and layered zirconia on natural teeth wear: An in vitro study. J. Indian Prosthodont. Soc. 2018, 18, 336–342. [Google Scholar] [PubMed]
- Ludovichetti, F.S.; Trindade, F.Z.; Werner, A.; Kleverlaan, C.J.; Fonseca, R.G. Wear resistance and abrasiveness of cad-cam monolithic materials. J. Prosthet. Dent. 2018, 120, 318.e1–318.e8. [Google Scholar] [CrossRef] [Green Version]
- Ríos, S.E.; Garcilazo, G.A.; Guerrero, I.J.; Meade, R.I.; Miguelena, M.K. Comparative study of displacement resistance of four zirconia cements. Rev. Odont. Mex. 2017, 21, 235–240. [Google Scholar]
- Kim, J.C.; Yu, B.; Lee, Y.K. Influence of surface layer removal of shade guide tabs on the measured color by spectrophotometer and spectroradiometer. J. Dent. 2008, 36, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, Y.K. Effect of thermocycling on optical parameters of resin composites by the brand and shade. Am. J. Dent. 2008, 21, 361–367. [Google Scholar]
- Kongkiatkamon, S.; Booranasophone, K.; Tongtaksin, A.; Kiatthanakorn, V.; Rokaya, D. Comparison of fracture load of the four translucent zirconia crowns. Molecules 2021, 26, 5308. [Google Scholar] [CrossRef]
- Mandour, M.H. Wear performance of three cad/cam monolithic restorations: Two-body wear and surface roughness. Egypt. Dent. J. 2017, 63, 1939–1953. [Google Scholar] [CrossRef]
- Grech, J.; Antunes, E. Zirconia in dental prosthetics: A literature review. J. Mater. Res. Technol. 2019, 8, 4956–4964. [Google Scholar] [CrossRef]
- Sorrentino, R.; Navarra, C.O.; Di Lenarda, R.; Breschi, L.; Zarone, F.; Cadenaro, M.; Spagnuolo, G. Effects of finish line design and fatigue cyclic loading on phase transformation of zirconia dental ceramics: A qualitative micro-raman spectroscopic analysis. Materials 2019, 12, 863. [Google Scholar] [CrossRef] [Green Version]
- Alqurashi, H.; Khurshid, Z.; Syed, A.U.Y.; Rashid Habib, S.; Rokaya, D.; Zafar, M.S. Polyetherketoneketone (pekk): An emerging biomaterial for oral implants and dental prostheses. J. Adv. Res. 2021, 28, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (peek) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Alexakou, E.; Damanaki, M.; Zoidis, P.; Bakiri, E.; Mouzis, N.; Smidt, G.; Kourtis, S. Peek high performance polymers: A review of properties and clinical applications in prosthodontics and restorative dentistry. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 113–121. [Google Scholar] [PubMed]
- Muhsin, S.A.; Hatton, P.V.; Johnson, A.; Sereno, N.; Wood, D.J. Determination of polyetheretherketone (peek) mechanical properties as a denture material. Saudi Dent. J. 2019, 31, 382–391. [Google Scholar] [CrossRef]
- Hallmann, L.; Mehl, A.; Sereno, N.; Hämmerle, C.H.F. The improvement of adhesive properties of peek through different pre-treatments. Appl. Surf. Sci. 2012, 258, 7213–7218. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Özcan, M.; Trottmann, A.; Schmutz, F.; Roos, M.; Hämmerle, C. Two-body wear rate of cad/cam resin blocks and their enamel antagonists. J. Prosthet. Dent. 2013, 109, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Humagain, M.; Rokaya, D. Integrating digital technologies in dentistry to enhance the clinical success. Kathmandu Univ. Med. J. (KUMJ) 2019, 17, 256–257. [Google Scholar]
- Amornvit, P.; Rokaya, D.; Sanohkan, S. Comparison of accuracy of current ten intraoral scanners. BioMed Res. Int. 2021, 2021, 2673040. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S.S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A.A.; Taghavinezhaddilami, F.; Leonova, A.; et al. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater. 2021, 122, 26–49. [Google Scholar] [CrossRef]
- Nesic, D.; Schaefer, B.M.; Sun, Y.; Saulacic, N.; Sailer, I. 3D printing approach in dentistry: The future for personalized oral soft tissue regeneration. J. Clin. Med. 2020, 9, 2238. [Google Scholar] [CrossRef]
- Cardoso, K.V.; Adabo, G.L.; Mariscal-Muñoz, E.; Antonio, S.G.; Arioli Filho, J.N. Effect of sintering temperature on microstructure, flexural strength, and optical properties of a fully stabilized monolithic zirconia. J. Prosthet. Dent. 2020, 124, 594–598. [Google Scholar] [CrossRef]
- Thoma, D.S.; Brandenberg, F.; Fehmer, V.; Knechtle, N.; Hämmerle, C.H.; Sailer, I. The esthetic effect of veneered zirconia abutments for single-tooth implant reconstructions: A randomized controlled clinical trial. Clin. Implant Dent. Relat. Res. 2016, 18, 1210–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bathala, L.; Majeti, V.; Rachuri, N.; Singh, N.; Gedela, S. The role of polyether ether ketone (peek) in dentistry—A review. J. Med. Life 2019, 12, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, I.; Kamposiora, P.; Papavasiliou, G.; Ferrari, M. The use of peek in digital prosthodontics: A narrative review. BMC Oral Health 2020, 20, 217. [Google Scholar] [CrossRef]
- Skirbutis, G.; Dzingutė, A.; Masiliūnaitė, V.; Šulcaitė, G.; Žilinskas, J. A review of peek polymer’s properties and its use in prosthodontics. Stomatologija 2017, 19, 19–23. [Google Scholar]
- Mamidi, N.; Velasco Delgadillo, R.M.; Gonzáles Ortiz, A.; Barrera, E.V. Carbon nano-onions reinforced multilayered thin film system for stimuli-responsive drug release. Pharmaceutics 2020, 12, 1208. [Google Scholar] [CrossRef]
- Thiruchitrambalam, M.; Bubesh Kumar, D.; Shanmugam, D.; Jawaid, M. A review on peek composites—Manufacturing methods, properties and applications. Mater. Today Proc. 2020, 33, 1085–1092. [Google Scholar] [CrossRef]
- Han, X.; Yang, D.; Yang, C.; Spintzyk, S.; Scheideler, L.; Li, P.; Li, D.; Geis-Gerstorfer, J.; Rupp, F. Carbon fiber reinforced peek composites based on 3D-printing technology for orthopedic and dental applications. J. Clin. Med. 2019, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed peek and a comparative mechanical study between peek and abs. Materials 2015, 8, 5834–5846. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, W.; Li, Y.; Yang, W.; Wang, G. Flexural properties and fracture behavior of cf/peek in orthogonal building orientation by fdm: Microstructure and mechanism. Polymers 2019, 11, 656. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.C.M.; Pinho, S.S.; Braz, M.P.; Silva, F.S.; Henriques, B. Carbon fiber-reinforced peek in implant dentistry: A scoping review on the finite element method. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Taufall, S.; Roos, M.; Schmidlin, P.R.; Lümkemann, N. Bonding of composite resins to peek: The influence of adhesive systems and air-abrasion parameters. Clin. Oral Investig. 2018, 22, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.G.; Yang, J.; Jia, Y.G.; Lu, B.; Ren, L. TiO2 and peek reinforced 3D printing pmma composite resin for dental denture base applications. Nanomaterials 2019, 9, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aladağ, A.; Oğuz, D.; Çömlekoğlu, M.E.; Akan, E. In vivo wear determination of novel cad/cam ceramic crowns by using 3D alignment. J. Adv. Prosthodont. 2019, 11, 120–127. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.J.; Park, J.S.; Ryu, J.J. Fracture load of monolithic cad/cam lithium disilicate ceramic crowns and veneered zirconia crowns as a posterior implant restoration. Implant Dent. 2013, 22, 66–70. [Google Scholar] [CrossRef]
- Heintze, S.D.; Eser, A.; Monreal, D.; Rousson, V. Using a chewing simulator for fatigue testing of metal ceramic crowns. J. Mech. Behav. Biomed. Mater. 2017, 65, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Bae, S.-Y.; Lee, J.-J.; Kim, J.-H.; Kim, H.-Y.; Kim, W.-C. Evaluation of the marginal and internal gaps of three different dental prostheses: Comparison of the silicone replica technique and three-dimensional superimposition analysis. J. Adv. Prosthodont. 2017, 9, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Zarone, F.; Russo, S.; Sorrentino, R. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2011, 27, 83–96. [Google Scholar] [CrossRef]
- Öztürk, C.; Can, G. Effect of sintering parameters on the mechanical properties of monolithic zirconia. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Janyavula, S.; Lawson, N.; Cakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O. The wear of polished and glazed zirconia against enamel. J. Prosthet. Dent. 2013, 109, 22–29. [Google Scholar] [CrossRef]
- Emera, R.; Altonbary, G. Comparison between all zirconia, all peek, and zirconia-peek telescopic attachments for two implants retained mandibular complete overdentures: In vitro stress analysis study. J. Dent. Implant 2019, 9, 24–29. [Google Scholar] [CrossRef]
- Kiliç, V.; Hürmüzlü, F. Effect of light sources on bond strength of different composite resins repaired with bulk-fill composite. Odovtos-Int. J. Dent. Sc. 2021, 23, 103–115. [Google Scholar]
- Zorba, Y.O.; Ilday, N.O.; Bayındır, Y.Z.; Demirbuga, S. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques. Eur. J. Dent. 2013, 7, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Yeo, I.S.; Lee, J.H.; Kang, T.J.; Kim, S.K.; Heo, S.J.; Koak, J.Y.; Park, J.M.; Lee, S.Y. The effect of abutment screw length on screw loosening in dental implants with external abutment connections after thermocycling. Int. J. Oral Maxillofac. Implant. 2014, 29, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.G.; Ley, R.L.C.; Barkmeier, W.W. Resin bond strength to siliconated metal. J. Esthet. Dent. 1992, 4, 30–33. [Google Scholar] [CrossRef]
- Heintze, S.D.; Cavalleri, A.; Forjanic, M.; Zellweger, G.; Rousson, V. A comparison of three different methods for the quantification of the in vitro wear of dental materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006, 22, 1051–1062. [Google Scholar] [CrossRef]
- Yılmaz, E.C.; Sadeler, R. Investigation of three-body wear of dental materials under different chewing cycles. Sci. Eng. Compos. Mater. 2018, 25, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Diabb Zavala, J.M.; Leija Gutiérrez, H.M.; Segura-Cárdenas, E.; Mamidi, N.; Morales-Avalos, R.; Villela-Castrejón, J.; Elías-Zúñiga, A. Manufacture and mechanical properties of knee implants using swcnts/uhmwpe composites. J. Mech. Behav. Biomed. Mater. 2021, 120, 104554. [Google Scholar] [CrossRef]
- Mamidi, N.; Delgadillo, R.M.V.; Castrejón, J.V. Unconventional and facile production of a stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation. Environ. Sci. Nano 2021, 8, 2081–2097. [Google Scholar] [CrossRef]
- Rokaya, D.; Srimaneepong, V.; Sapkota, J.; Qin, J.; Siraleartmukul, K.; Siriwongrungson, V. Polymeric materials and films in dentistry: An overview. J. Adv. Res. 2018, 14, 25–34. [Google Scholar] [CrossRef]
- Mamidi, N.; Leija, H.M.; Diabb, J.M.; Lopez Romo, I.; Hernandez, D.; Castrejón, J.V.; Martinez Romero, O.; Barrera, E.V.; Elias Zúñiga, A. Cytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites. J. Biomed. Mater. Res. A 2017, 105, 3042–3049. [Google Scholar] [CrossRef] [PubMed]
- Salernitano, E.; Migliaresi, C. Composite materials for biomedical applications: A review. J. Appl. Biomater. Biomech. JABB 2003, 1, 3–18. [Google Scholar]
- Tibbitt, M.W.; Rodell, C.B.; Burdick, J.A.; Anseth, K.S. Progress in material design for biomedical applications. Proc. Natl. Acad. Sci. USA 2015, 112, 14444–14451. [Google Scholar] [CrossRef] [Green Version]
- Gou, M.; Chen, H.; Kang, J.; Wang, H. Antagonist enamel wear of tooth-supported monolithic zirconia posterior crowns in vivo: A systematic review. J. Prosthet. Dent. 2019, 121, 598–603. [Google Scholar] [CrossRef]
- Heimer, S.; Schmidlin, P.R.; Stawarczyk, B. Discoloration of pmma, composite, and peek. Clin. Oral Investig. 2017, 21, 1191–1200. [Google Scholar] [CrossRef] [Green Version]
- Wimmer, T.; Huffmann, A.M.; Eichberger, M.; Schmidlin, P.R.; Stawarczyk, B. Two-body wear rate of peek, cad/cam resin composite and pmma: Effect of specimen geometries, antagonist materials and test set-up configuration. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2016, 32, e127–e136. [Google Scholar] [CrossRef] [Green Version]
- Aljanobi, G.; Al-Sowygh, Z.H. The effect of thermocycling on the translucency and color stability of modified glass ceramic and multilayer zirconia materials. Cureus 2020, 12, e6968. [Google Scholar] [CrossRef] [Green Version]
- Sarıkaya, I.; Hayran, Y. Effects of dynamic aging on the wear and fracture strength of monolithic zirconia restorations. BMC Oral Health 2018, 18, 146. [Google Scholar] [CrossRef]
- Bajraktarova-Valjakova, E.; Korunoska-Stevkovska, V.; Kapusevska, B.; Gigovski, N.; Bajraktarova-Misevska, C.; Grozdanov, A. Contemporary dental ceramic materials, a review: Chemical composition, physical and mechanical properties, indications for use. Open Access Maced. J. Med. Sci. 2018, 6, 1742–1755. [Google Scholar] [CrossRef] [Green Version]
- Qorri, E.; Gashi-Cenkoglu, B.; Propris, F.; Karabudak, I. The use of biohpp (high performance polymer) as superstructure material in oral implantology. Clin. Oral Implant. Res. 2018, 29, 351. [Google Scholar] [CrossRef] [Green Version]
- Mirchandani, B.; Zhou, T.; Heboyan, A.; Yodmongkol, S.; Buranawat, B. Biomechanical aspects of various attachments for implant overdentures: A review. Polymers 2021, 13, 3248. [Google Scholar] [CrossRef] [PubMed]
- Daou, E.E. The zirconia ceramic: Strengths and weaknesses. Open Dent. J. 2014, 8, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Caracostea Objelean, A.; Labunet, A.; Silaghi-Dumitrescu, L.; Moldovan, M.; Sava, S.; Badea, M.E. In vitro chewing simulation model influence on the adhesive-tooth structure interface. Key Eng. Mater. 2016, 695, 77–82. [Google Scholar] [CrossRef]
- Heintze, S.D.; Zellweger, G.; Grunert, I.; Muñoz-Viveros, C.A.; Hagenbuch, K. Laboratory methods for evaluating the wear of denture teeth and their correlation with clinical results. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2012, 28, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Juntavee, N.; Attashu, S. Effect of different sintering process on flexural strength of translucency monolithic zirconia. J. Clin. Exp. Dent. 2018, 10, e821–e830. [Google Scholar] [CrossRef]
- Heboyan, A.; Manrikyan, M.; Zafar, M.S.; Rokaya, D.; Nushikyan, R.; Vardanyan, I.; Vardanyan, A.; Khurshid, Z. Bacteriological evaluation of gingival crevicular fluid in teeth restored using fixed dental prostheses: An in vivo study. Int. J. Mol. Sci. 2021, 22, 5463. [Google Scholar] [CrossRef]
- Shen, Y.X.; Tang, W.Z. Analysis of vita shade guide with spectrophotometer under different color measurement conditions. Acad. J. Second. Mil. Med. Univ. 2015, 36, 100–102. [Google Scholar] [CrossRef]
- Avetisyan, A.; Markaryan, M.; Rokaya, D.; Tovani-Palone, M.R.; Zafar, M.S.; Khurshid, Z.; Vardanyan, A.; Heboyan, A. Characteristics of periodontal tissues in prosthetic treatment with fixed dental prostheses. Molecules 2021, 26, 1331. [Google Scholar] [CrossRef]
- Heboyan, A.; Syed, A.U.Y.; Rokaya, D.; Cooper, P.R.; Manrikyan, M.; Markaryan, M. Cytomorphometric analysis of inflammation dynamics in the periodontium following the use of fixed dental prostheses. Molecules 2020, 25, 4650. [Google Scholar] [CrossRef]
- Kozmacs, C.; Hollmann, B.; Arnold, W.H.; Naumova, E.; Piwowarczyk, A. Polishing of monolithic zirconia crowns-results of different dental practitioner groups. Dent. J. 2017, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavali, R.; Lin, C.P.; Lawson, N.C. Evaluation of different polishing systems and speeds for dental zirconia. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2017, 26, 410–418. [Google Scholar] [CrossRef]
- Heboyan, A.; Manrikyan, M.; Markaryan, M.; Vardanyan, I. Changes in the parameters of gingival crevicular fluid in masticatory function restoration by various prosthodontic constructions. Int. J. Pharm. Res. 2020, 12, 2088–2093. [Google Scholar]
- AlGhazali, N.; Burnside, G.; Smith, R.W.; Preston, A.J.; Jarad, F.D. Performance assessment of vita easy shade spectrophotometer on colour measurement of aesthetic dental materials. Eur. J. Prosthodont. Restor. Dent. 2011, 19, 168–174. [Google Scholar] [PubMed]
- Kalantari, M.H.; Ghoraishian, S.A.; Mohaghegh, M. Evaluation of accuracy of shade selection using two spectrophotometer systems: Vita easyshade and degudent shadepilot. Eur. J. Dent. 2017, 11, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Linjawi, A.I.; Abbassy, M.A. Comparison of shear bond strength to clinically simulated debonding of orthodontic brackets: An in vitro study. J. Orthod. Sci. 2016, 5, 25–29. [Google Scholar]
- Salem, S.K. Wear and microhardness of three different types of cad/cam ceramic materials. Egypt Dent. J. 2019, 65, 2857–2866. [Google Scholar] [CrossRef] [Green Version]
- Bolaca, A.; Erdogan, Y. In vitro evaluation of the wear of primary tooth enamel against different ceramic and composite resin materials. Niger. J. Clin. Pract. 2019, 22, 313–319. [Google Scholar] [PubMed]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural properties and elastic modulus of different esthetic restorative materials: Evaluation after exposure to acidic drink. BioMed Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef] [PubMed]
- Alrahlah, A.; Khan, R.; Al-Odayni, A.-B.; Saeed, W.S.; Bautista, L.S.; Vohra, F. Evaluation of synergic potential of rgo/sio2 as hybrid filler for bisgma/tegdma dental composites. Polymers 2020, 12, 3025. [Google Scholar] [CrossRef] [PubMed]
- Rizo-Gorrita, M.; Herráez-Galindo, C.; Torres-Lagares, D.; Serrera-Figallo, M.; Gutiérre-Pérez, J.L. Biocompatibility of polymer and ceramic cad/cam materials with human gingival fibroblasts (hgfs). Polymers 2019, 11, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups | Prosthetic Crowns (n = 24) | |
---|---|---|
Zirconia (n = 12) | PEEK (n = 12) | |
Control (C) | zirconia control (1a) (n = 4) | PEEK control (2a) (n = 4) |
Thermocycled (T) | zirconia thermocycled (1b) (n = 4) | PEEK thermocycled = (2b) (n = 4) |
Thermocycled + Worn (T + W) | zirconia worn and thermocycled (1c) (n = 4) | PEEK worn and thermocycled (2c) (n = 4) |
Antagonist Wear (mm2) (Post-Wear) | Material | Wilcoxon–Mann–Whitney U Test | ||
---|---|---|---|---|
Zirconia | PEEK | W | p Value | |
Mean (SD) | 6.17 (0.92) | 2.50 (0.60) | 144.00 | <0.001 * |
Median (IQR) | 6.33 (0.94) | 2.62 (1) | ||
Range | 4.25–7.5 | 1.5–3.5 |
Material Wear (mm2) (Post-Wear) | Material | Wilcoxon–Mann–Whitney U-Test | ||
---|---|---|---|---|
Zirconia | PEEK | W | p Value | |
Mean (SD) | 1.68 (0.49) | 3.75 (0.89) | 0.500 | <0.001 * |
Median (IQR) | 1.68 (0.56) | 3.5 (1.12) | ||
Range | 1–2.5 | 2.5–5.5 |
Color Stability | Crown Materials | p Value | |||
---|---|---|---|---|---|
Zirconia | PEEK | ||||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | ||
Control (C) | 17.71 (0.68) | 17.85 (0.62) | 9.58 (0.51) | 9.50 (0.65) | <0.001 * |
Thermocycled (T) | 14.72 (0.85) | 14.65 (1.12) | 6.23 (0.40) | 6.20 (0.58) | <0.001 * |
Thermocycled + Worn (T + W) | 11.88 (0.81) | 11.90 (1.15) | 5.28 (0.60) | 5.10 (0.93) | <0.001 * |
Friedman Test (p value) | <0.001 * | <0.001 * |
Displacement (mm2) | Material | p Value | |||
---|---|---|---|---|---|
Zirconia | PEEK | ||||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | ||
Control | 0.73 (0.05) | 0.72 (0.06) | 1.90 (0.18) | 1.90 (0.20) | <0.001 * |
Thermocycled (T) | 0.45 (0.11) | 0.44 (0.14) | 1.49 (0.09) | 1.48 (0.11) | <0.001 * |
Thermocycled + Worn (T + W) | 0.70 (0.09) | 0.70 (0.09) | 1.39 (0.08) | 1.39 (0.11) | <0.001 * |
Friedman Test (p value) | <0.001 * | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abhay, S.S.; Ganapathy, D.; Veeraiyan, D.N.; Ariga, P.; Heboyan, A.; Amornvit, P.; Rokaya, D.; Srimaneepong, V. Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging. Polymers 2021, 13, 3761. https://doi.org/10.3390/polym13213761
Abhay SS, Ganapathy D, Veeraiyan DN, Ariga P, Heboyan A, Amornvit P, Rokaya D, Srimaneepong V. Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging. Polymers. 2021; 13(21):3761. https://doi.org/10.3390/polym13213761
Chicago/Turabian StyleAbhay, Simone Shah, Dhanraj Ganapathy, Deepak Nallaswamy Veeraiyan, Padma Ariga, Artak Heboyan, Pokpong Amornvit, Dinesh Rokaya, and Viritpon Srimaneepong. 2021. "Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging" Polymers 13, no. 21: 3761. https://doi.org/10.3390/polym13213761
APA StyleAbhay, S. S., Ganapathy, D., Veeraiyan, D. N., Ariga, P., Heboyan, A., Amornvit, P., Rokaya, D., & Srimaneepong, V. (2021). Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging. Polymers, 13(21), 3761. https://doi.org/10.3390/polym13213761