Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly(l-lactic acid)/Cyclo Olefin Copolymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Hydroxyapatite Nanoparticles
2.3. Fabrication of Nanocomposites PLLA/COC10-nHA
2.4. Fabrication of Nanocomposites PLLA/nHA
2.5. Characterization Techniques
3. Results
3.1. Morphology and Structure
3.1.1. Morphology of the Nanocomposites
3.1.2. Wide-Angle XRD of Nanocomposites
3.1.3. FTIR Analysis
3.2. Thermomechanical Properties
3.2.1. DSC of Nanocomposites
3.2.2. Mechanical Properties of Nanocomposites
3.3. Swelling Analysis of Nanocomposites
3.4. Degradation Analysis
3.5. In Vitro Studies of Nanocomposites
3.5.1. Antimicrobial Activity of Nanocomposites
3.5.2. Cell Culture on Nanocomposites
3.5.3. Mineralization Studies on Nanocomposites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 2021, 31, 2010609. [Google Scholar] [CrossRef]
- Annamalai, R.T.; Hong, X.; Schott, N.G.; Tiruchinapally, G.; Levi, B.; Stegemann, J.P. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials 2019, 208, 32–44. [Google Scholar] [CrossRef]
- Schemitsch, E.H. Size Matters: Defining Critical in Bone Defect Size! J. Orthop. Trauma. 2017, 31 (Suppl. 5), S20–S22. [Google Scholar] [CrossRef]
- Lee, J.W.; Han, H.S.; Han, K.J.; Park, J.; Jeon, H.; Ok, M.R.; Seok, H.K.; Ahn, J.P.; Lee, K.E.; Lee, D.H.; et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc. Natl. Acad. Sci. USA 2016, 113, 716–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhumiratana, S.; Bernhard, J.C.; Alfi, D.M.; Yeager, K.; Eton, R.E.; Bova, J.; Shah, F.; Gimble, J.M.; Lopez, M.J.; Eisig, S.B.; et al. Tissue-engineered autologous grafts for facial bone reconstruction. Sci. Transl. Med. 2016, 8, 343ra83. [Google Scholar] [CrossRef] [Green Version]
- Raghavendran, H.R.B.; Puvaneswary, S.; Talebian, S.; Murali, M.R.; Naveen, S.V.; Krishnamurithy, G.; McKean, R.; Kamarul, T. A comparative study on in vitro osteogenic priming potential of electron spun scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for tissue engineering application. PLoS ONE 2014, 9, e104389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koons, G.L.; Diba, M.; Mikos, A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603. [Google Scholar] [CrossRef]
- Norris, C.J.; Meadway, G.J.; O’Sullivan, M.J.; Bond, I.P.; Trask, R.S. Self-Healing Fibre Reinforced Composites via a Bioinspired Vasculature. Adv. Funct. Mater. 2011, 21, 3624–3633. [Google Scholar] [CrossRef]
- Nazir, F.; Ashraf, I.; Iqbal, M.; Ahmad, T.; Anjum, S. 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: In vitro and in vivo studies. Int. J. Biol. Macromol. 2021, 185, 419–433. [Google Scholar] [CrossRef]
- Nazir, F.; Iqbal, M. Synthesis, characterization and cytotoxicity studies of aminated microcrystalline cellulose derivatives against melanoma and breast cancer cell lines. Polymers 2020, 12, 2634. [Google Scholar] [CrossRef]
- Nazir, F.; Iqbal, M.; Khan, A.N.; Mazhar, M.; Hussain, Z. Fabrication of Robust Poly l-Lactic Acid/Cyclic Olefinic Copolymer (PLLA/COC) Blends: Study of Physical Properties, Structure, and Cytocompatibility for Bone Tissue Engineering. J. Mater. Res. Technol. 2021, 13, 1732–1751. [Google Scholar] [CrossRef]
- Iqbal, M.; Zafar, H.; Mahmood, A.; Niazi, M.B.K.; Aslam, M.W. Starch-capped silver nanoparticles impregnated into propylamine-substituted PVA films with improved antibacterial and mechanical properties for wound-bandage applications. Polymers 2020, 12, 2112. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef] [Green Version]
- Abdal-hay, A.; Sheikh, F.A.; Lim, J.K. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf. B Biointerfaces 2013, 102, 635–643. [Google Scholar] [CrossRef]
- Demina, V.A.; Krasheninnikov, S.V.; Buzin, A.I.; Kamyshinsky, R.A.; Sadovskaya, N.V.; Goncharov, E.N.; Zhukova, N.A.; Khvostov, M.V.; Pavlova, A.V.; Tolstikova, T.G. Biodegradable poly(l-lactide)/calcium phosphate composites with improved properties for orthopedics: Effect of filler and polymer crystallinity. Mater. Sci. Eng. C 2020, 112, 110813. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Dong, C.; Yang, L.; Lv, Y. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2015, 7, 15790–15802. [Google Scholar] [CrossRef] [PubMed]
- Ain, Q.U.; Khan, A.N.; Nabavinia, M.; Mujahid, M. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 807–815. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Alam, A.K.M.M.; Heim, H.P.; Feldmann, M. Synergized poly(lactic acid)–hydroxyapatite composites: Biocompatibility study. J. Appl. Polym. Sci. 2019, 136, 47400. [Google Scholar] [CrossRef]
- Hickey, D.J.; Ercan, B.; Sun, L.; Webster, T.J. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater. 2015, 14, 175–184. [Google Scholar] [CrossRef]
- Kang, I.G.; Kim, J.; Park, S.; Kim, H.E.; Han, C.M. PLLA Membrane with Embedded Hydroxyapatite Patterns for Improved Bioactivity and Efficient Delivery of Growth Factor. Macromol. Biosci. 2020, 20, e2000136. [Google Scholar] [CrossRef]
- Vannozzi, L.; Gouveia, P.; Pingue, P.; Canale, C.; Ricotti, L. Novel Ultrathin Films Based on a Blend of PEG-b-PCL and PLLA and Doped with ZnO Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 21398–21410. [Google Scholar] [CrossRef]
- Cecen, B.; Kozaci, L.D.; Yuksel, M.; Ustun, O.; Ergur, B.U.; Havitcioglu, H. Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-l-lactic acid with chondrocyte-like cells. Mater. Sci. Eng. C 2016, 69, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, S.; el Sawi, I.; Bagheri, Z.S.; Turcotte, G.; Bougherara, H. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 39, 120–125. [Google Scholar] [CrossRef] [PubMed]
- De Siqueira, L.; Ribeiro, N.; Paredes, M.B.A.; Grenho, L.; Cunha-Reis, C.; Triches, E.S.; Fernandes, M.H.; Sousa, S.R.; Monteiro, F.J. Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behavior. Material 2019, 12, 3879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiello, C.; Andreozzi, P.; la Mesa, C.; Risuleo, G. Biological activity of SDS-CTAB cat-anionic vesicles in cultured cells and assessment of their cytotoxicity ending in apoptosis. Colloids Surf. B Biointerfaces 2010, 78, 149–154. [Google Scholar] [CrossRef]
- Riaz, Z.; Khan, A.N.; Abbas, S.R.; Hussain, Z. Structure-properties relationships of novel cyclic olefinic copolymer/poly(l-lactic acid) polymer blends. J. Mater. Res. Technol. 2020, 9, 7172–7179. [Google Scholar] [CrossRef]
- Saleem, M.; Khan, A.N.; Abbas, S.R.; Saboor, A. Super Toughening, Strengthening, and Antimicrobial Behaviors of Cyclic Olefinic Copolymer/Few Layer Graphene Nanocomposites. Polym. Compos. 2019, 40, 536–543. [Google Scholar] [CrossRef]
- Klinkaewnarong, J.; Utara, S. Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles. Ultrason. Sonochem. 2018, 46, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, F.; de la Orden, M.; Lorenzo, V.; Pérez, E.; Cerrada, M.; Urreaga, J.M. Water-induced structural changes in poly(lactic acid) and PLLA-clay nanocomposites. Polymer 2016, 107, 211–222. [Google Scholar] [CrossRef]
- Nosrati, H.; Mamoory, R.S.; Le, D.Q.S.; Bünger, C.E.; Emameh, R.Z.; Dabir, F.J.M.C. Gas injection approach for synthesis of hydroxyapatite nanorods via hydrothermal method. Mater. Charact. 2020, 159, 110071. [Google Scholar] [CrossRef]
- Righetti, M.C.; Gazzano, M.; Delpouve, N.; Saiter, A. Contribution of the rigid amorphous fraction to physical ageing of semi-crystalline PLLA. Polymer 2017, 125, 241–253. [Google Scholar] [CrossRef]
- Righetti, M.C.; Delpouve, N.; Saiter, A. Physical ageing of semi-crystalline PLLA: Role of the differently constrained amorphous fractions. In AIP Conference Proceedings; AIP Publishing LLC: New York, NY, USA, 2018; p. 020082. [Google Scholar]
- Athanasoulia, I.-G.I.; Christoforidis, M.N.; Korres, D.M.; Tarantili, P.A. The effect of hydroxyapatite nanoparticles on crystallization and thermomechanical properties of PLLA matrix. Pure Appl. Chem. 2017, 89, 125–140. [Google Scholar] [CrossRef]
- Zhao, L.-S.; Cai, Y.-H. Studies of Poly(l-lactic acid)/Hydroxyapatite Composites Through DSC and XRD, IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 042049. [Google Scholar]
- Li, S.; He, T.; Liao, X.; Yang, Q.; Li, G. Structural changes and crystallization kinetics of polylactide under CO2 investigated using high-pressure Fourier transform infrared spectroscopy. Polym. Int. 2015, 64, 1762–1769. [Google Scholar] [CrossRef]
- Gieroba, B.; Przekora, A.; Kalisz, G.; Kazimierczak, P.; Song, C.L.; Wojcik, M.; Ginalska, G.; Kazarian, S.G.; Sroka-Bartnicka, A. Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging. Mater. Sci. Eng. C 2021, 119, 111634. [Google Scholar] [CrossRef]
- Szustakiewicz, K.; Stępak, B.; Antończak, A.; Maj, M.; Gazińska, M.; Kryszak, B.; Pigłowski, J. Femtosecond laser-induced modification of PLLA/hydroxyapatite composite. Polym. Degrad. Stab. 2018, 149, 152–161. [Google Scholar] [CrossRef]
- Athanasoulia, I.-G.; Giachalis, K.; Todorova, N.; Giannakopoulou, T.; Tarantili, P.; Trapalis, C. Preparation of hybrid composites of PLLA using GO/PEG masterbatch and their characterization. J. Therm. Anal. Calorim. 2020, 143, 3385–3399. [Google Scholar] [CrossRef]
- Shi, J.; Wang, W.; Feng, Z.; Zhang, D.; Zhou, Z.; Li, Q. Multiple influences of hydrogen bonding interactions on PLLA crystallization behaviors in PLLA/TSOS hybrid blending systems. Polymer 2019, 175, 152–160. [Google Scholar] [CrossRef]
- He, Y.; Fan, Z.; Hu, Y.; Wu, T.; Wei, J.; Li, S. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur. Polym. J. 2007, 43, 4431–4439. [Google Scholar] [CrossRef]
- Lin, W.; He, Y.; Qu, J.P. Super-Tough and Highly-Ductile Poly(l-lactic acid)/Thermoplastic Polyurethane/Epoxide-Containing Ethylene Copolymer Blends Prepared by Reactive Blending. Macromol. Mater. Eng. 2019, 304, 1900020. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, F.; Yu, Q.; Ni, C.; Gu, X.; Li, Y.; You, J. Fabrication of PLLA with high ductility and transparence by blending with tiny amount of PVDF and compatibilizers. Macromol. Mater. Eng. 2019, 304, 1900316. [Google Scholar] [CrossRef]
- Cao, X.; Dong, W.; He, M.; Zhang, J.; Ren, F.; Li, Y. Effects of blending sequences and molecular structures of the compatibilizers on the morphology and properties of PLLA/ABS blends. RSC Adv. 2019, 9, 2189–2198. [Google Scholar] [CrossRef] [Green Version]
- Díaz, E.; Molpeceres, A.L.; Sandonis, I.; Puerto, I. PLLA/nHA composite films and scaffolds for medical implants: In vitro degradation, thermal and mechanical properties. J. Inorg. Organomet. Polym. Mater. 2019, 29, 121–131. [Google Scholar] [CrossRef]
- Peng, H.; Varanasi, S.; Wang, D.K.; Blakey, I.; Rasoul, F.; Symons, A.; Hill, D.J.; Whittaker, A.K. Synthesis, swelling, degradation and cytocompatibility of crosslinked PLLA-PEG-PLLA networks with short PLLA blocks. Eur. Polym. J. 2016, 84, 448–464. [Google Scholar] [CrossRef]
- Han, Y.; Fan, Z.; Lu, Z.; Zhang, Y.; Li, S. In vitro Degradation of Poly[(l-lactide)-co-(trimethylene carbonate)] Copolymers and a Composite with Poly[(l-lactide)-co-glycolide] Fibers as Cardiovascular Stent Material. Macromol. Mater. Eng. 2012, 297, 128–135. [Google Scholar] [CrossRef]
- Díaz, E.; Sandonis, I.; Puerto, I.; Ibáñez, I. In vitro degradation of PLLA/nHA composite scaffolds. Polym. Eng. Sci. 2014, 54, 2571–2578. [Google Scholar] [CrossRef]
- Passos, M.F.; Fernández-Gutiérrez, M.; Vázquez-Lasa, B.; Román, J.S.; Filho, R.M. PHEMA-PLLA semi-interpenetrating polymer networks: A study of their swelling kinetics, mechanical properties and cellular behavior. Eur. Polym. J. 2016, 85, 150–163. [Google Scholar] [CrossRef]
- Oyama, H.T.; Kimura, M.; Nakamura, Y.; Ogawa, R. Environmentally safe bioadditive allows degradation of refractory poly(lactic acid) in seawater: Effect of poly(aspartic acid-co-l-lactide) on the hydrolytic degradation of PLLA at different salinity and pH conditions. Polym. Degrad. Stab. 2020, 178, 109216. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, S.; Wang, C.; Jeong, D.Y.; Wang, Z.L.; Ren, K. Biodegradable electrospun poly(lactic acid) nanofibers for effective PM 2.5 removal. Macromol. Mater. Eng. 2019, 304, 1900259. [Google Scholar] [CrossRef]
- Bernard, M.; Jubeli, E.; Bakar, J.; Saunier, J.; Yagoubi, N. Impact of simulated biological aging on physicochemical and biocompatibility properties of cyclic olefin copolymers. Mater. Sci. Eng. C 2019, 97, 377–387. [Google Scholar] [CrossRef]
- Hassanajili, S.; Karami-Pour, A.; Oryan, A.; Talaei-Khozani, T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater. Sci. Eng. C 2019, 104, 109960. [Google Scholar] [CrossRef] [PubMed]
- Davachi, S.M.; Kaffashi, B.; Torabinejad, B.; Zamanian, A. In-vitro investigation and hydrolytic degradation of antibacterial nanocomposites based on PLLA/triclosan/nano-hydroxyapatite. Polymer 2016, 83, 101–110. [Google Scholar] [CrossRef]
- Davoodi, S.; Oliaei, E.; Davachi, S.M.; Hejazi, I.; Seyfi, J.; Heidari, B.S.; Ebrahimi, H. Preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications. RSC Adv. 2016, 6, 39870–39882. [Google Scholar] [CrossRef]
- Mehmood, T.; Iqbal, M.; Hassan, R. Prediction of antibacterial activity in ionic liquids through FTIR spectroscopy with selection of wavenumber by PLS. Chemom. Intell. Lab. Syst. 2020, 206, 104124. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Chen, T.; Zhang, N.; Wei, Q.; Tian, J.; Wang, Y.; Ma, C.; Lu, Y. Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction. J. Adv. Res. 2020, 21, 91–102. [Google Scholar] [CrossRef]
- Ou, C.-F.; Hsu, M.-C. Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. J. Polym. Res. 2007, 14, 373–378. [Google Scholar] [CrossRef]
- Saravanan, S.; Nethala, S.; Pattnaik, S.; Tripathi, A.; Moorthi, A.; Selvamurugan, N. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int. J. Biol. Macromol. 2011, 49, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, W.; Luo, B.; Chen, X.; Wen, W.; Zhou, C. Icariin immobilized electrospinning poly(l-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity. Mater. Sci. Eng. C 2017, 79, 399–409. [Google Scholar] [CrossRef]
- Shuai, C.; Yang, W.; Feng, P.; Peng, S.; Pan, H. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact. Mater. 2021, 6, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Chakrapani, V.Y.; Kumar, T.; Raj, D.; Kumary, T. Electrospun cytocompatible polycaprolactone blend composite with enhanced wettability for bone tissue engineering. J. Nanosci. Nanotechnol. 2017, 17, 2320–2328. [Google Scholar] [CrossRef]
- Persson, M.; Lorite, G.S.; Kokkonen, H.E.; Cho, S.-W.; Lehenkari, P.P.; Skrifvars, M.; Tuukkanen, J. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf. B Biointerfaces 2014, 121, 409–416. [Google Scholar] [CrossRef]
- Xiong, A.; He, Y.; Gao, L.; Li, G.; Weng, J.; Kang, B.; Wang, D.; Zeng, H. Smurf1-targeting miR-19b-3p-modified BMSCs combined PLLA composite scaffold to enhance osteogenic activity and treat critical-sized bone defects. Biomater. Sci. 2020, 8, 6069–6081. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, X.; Wang, H.; Wei, Y.; Yang, Z.; Huang, R.; Liang, W.; Qin, X.; Guo, W.; Ren, D. Core–Shell Poly(l-lactic acid)-Hyaluronic Acid Nanofibers for Cell Culture and Pelvic Ligament Tissue Engineering. J. Biomed. Nanotechnol. 2021, 17, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Nabavinia, M.; Khoshfetrat, A.B.; Naderi-Meshkin, H. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater. Sci. Eng. C 2019, 97, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Sardroud, H.A.; Nemati, S.; Khoshfetrat, A.B.; Nabavinia, M.; Khosrowshahi, Y.B. Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation. J. Microencapsul. 2017, 34, 488–497. [Google Scholar] [CrossRef]
- Sharma, C.; Dinda, A.K.; Potdar, P.D.; Chou, C.-F.; Mishra, N.C. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 2016, 64, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Dyke, J.C.; Knight, K.J.; Zhou, H.; Chiu, C.-K.; Ko, C.-C.; You, W. An investigation of siloxane cross-linked hydroxyapatite–gelatin/copolymer composites for potential orthopedic applications. J. Mater. Chem. 2012, 22, 22888–22898. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, K.; Lin-Gibson, S.; Wallace, W.E.; Parekh, S.H.; Lee, Y.J.; Cicerone, M.T.; Young, M.F.; Simon, C.G., Jr. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 2010, 31, 5051–5062. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Zhao, J.; Zhang, X.; Li, H.; Zhou, Y. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur. J. Pharmacol. 2013, 714, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Juan, P.-K.; Fan, F.-Y.; Lin, W.-C.; Liao, P.-B.; Huang, C.-F.; Shen, Y.-K.; Ruslin, M.; Lee, C.-H. Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds. Polymers 2021, 13, 2718. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Samiei, M.; Hokmabad, V.R.; Alizadeh, E.; Jabbari, N.; Seifalian, A.; Salehi, R. The Effect of Melanocyte Stimulating Hormone and Hydroxyapatite on Osteogenesis in Pulp Stem Cells of Human Teeth Transferred into Polyester Scaffolds. Fibers Polym 2018, 19, 2245–2253. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, S.; Ma, Y.; Xu, W.; Meng, W.; Lin, X.; Wang, W.; Wang, S.; Zhang, J. Innovative biodegradable poly(l-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. Int. J. Nanomed. 2017, 12, 7577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nanocomposites | First Heating Scan | Cooling Scan | Second Heating Scan | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Tg1 | Tm1 | Tc | Tg2 | Tcc | Tm12 | Tm22 | ΔHm | ΔHc | Percentage Crystallinity (χ%) | |
PLLA/COC10 | 45.69 | 178.25 | 102 | 62 | 103.72 157.54 | 175.22 | ------- | 50 | 18 | 37.94 |
PLLA/COC10/nHA 1 wt% | 43 | 142 | ------- | 43.7 | 103.89 | 129.85 | 140.68 | 18.9 | −17.42 | 39.15 |
PLLA/COC10/nHA 5 wt% | 45 | 142 | ------- | 44.9 | 108.91 | 136.55 | 145.71 | 18.55 | −18.26 | 41.35 |
PLLA/COC10/nHA 10 wt% | 45 | 144 | ------- | 45.73 | 108.92 | 137.38 | 145.70 | 18.48 | −18.32 | 43.63 |
PLLA/COC10/nHA 20 wt% | 46 | 144.7 | ------- | 45.7 | 105.74 | 131.86 | 142.20 | 11.03 | −11.15 | 29.58 |
PLLA | 68 | 176 | 115 | 60 | ------- | 178 | ------- | 32 | 0 | 34.15 |
PLLA/nHA 1 wt% | 48 | 144.3 | ------- | 45.01 | 108.69 | 137.15 | 143.56 | 14.33 | −14.56 | 31.143 |
PLLA/nHA 5 wt% | 48 | 144 | ------- | 46.6 | 108.30 | 134.32 | 142.48 | 13.46 | −14.78 | 31.72 |
PLLA/nHA 10 wt% | 48 | 143 | ------- | 46.5 | 113.35 | 139.32 | 145.32 | 15.07 | −13.23 | 33.55 |
PLLA/nHA 20 wt% | 45 | 145 | ------- | 44.5 | 97.77 | 127.57 | 140.40 | 10.07 | −11.23 | 28.41 |
Nanocomposite Composition | Young Modulus of PLLA/nHA | Young Modulus of PLLA/COC10-nHA |
---|---|---|
(MPa) | (MPa) | |
Polymer | 571.65 ± 2.8 | 843.0 ± 4.2 |
nHA1wt% | 88 ± 5.4 | 107 ± 3.5 |
nHAwt5% | 104 ± 4.5 | 263 ± 6.1 |
nHAwt10% | 110 ± 6.2 | 278 ± 4.9 |
nHA20wt% | 245 ± 3.5 | 289 ± 3.5 |
Nanocomposite Composition | Elongation at Break PLLA/nHA | Elongation at Break PLLA/COC10-nHA |
---|---|---|
Strain % | Strain % | |
Polymer | 7.84 ± 1.24 | 33.87 ± 3.2 |
nHA1wt% | 12.197 ± 2.34 | 17.14 ± 2.6 |
nHA5wt% | 10.37 ± 1.98 | 14.57 ± 1.4 |
nHA10wt% | 5.56 ± 1.2 | 12.76 ± 1.7 |
nHA20wt% | 2.62 | 6.49 |
Nanocomposite Composition | UTS of PLLA/nHA | UTS of PLLA/COC10-nHA |
---|---|---|
Maximum Stress (MPa) | Maximum Stress (MPa) | |
Polymer | 21.09 ± 2.45 | 24.4 ± 1.8 |
nHA1wt% | 12.74 ± 1.34 | 10.29 ± 0.9 |
nHA5wt% | 11.75 ± 1.03 | 11.5 ± 1.01 |
nHA10wt% | 8.54 ± 1.2 | 9.41 ± 0.56 |
nHA20wt% | 2.3 ± 1.3 | 7.25 ± 1.34 |
Nanocomposites | Diameter of Inhibition (mm) | |||
---|---|---|---|---|
Escherichia coli Gram (−) | Pseudomonas aeruginosa Gram (−) | Staphylococcus aureus Gram (+) | Listeria monocytogenes Gram (+) | |
PLLA/COC10-nHA 1 wt% | ns | ns | ns | ns |
PLLA/COC10-nHA 5 wt% | ns | 8.45 ± 0.3 | ns | 6.20 ± 0.10 |
PLLA/COC10-nHA 10 wt% | ns | 10.39 ± 0.65 | 15.34 ± 0.11 | 14.73 ± 0.19 |
PLLA/COC10-nHA 20 wt% | ns | 13.29 ± 0.43 | 8.21 ± 0.32 | 12.68 ± 0.43 |
Reference | Scaffold | Fabrication Procedure | Thermal or Mechanical Properties | Cell Type | Test and Results |
---|---|---|---|---|---|
[71] | PLLA/PCL/HA | Electrospinning | 0.002–2.99 MPa (Young’s modulus) | MC3T3-E1 osteoblast | PLLA/PCL fibers with aggregates of nanophased HA. Introduction of nHA increased mechanical properties. Aligned fibers had good tensil mechanical properties. Scaffold supported adhesion and proliferation of preosteroblast cells. Antibacterial tests against Staphylococcus aureus showed lower number of colony forming units (CFUs), when PLLA/PCL fibers are aligned. |
[22] | Loofah + PLLA + HA | Dip coated with PLLA solution | Stiffness 18−30 MPa PLLA Tm 160–175 °C | SW-1353 chondrocytes | Mechanical properties are result of strong interaction of HA/PLLA and loofah interaction. Metabolic activity suggested non-cytotoxicity of the scaffold. Overall results showed potential as cartilage tissue-engineering scaffold. |
[60] | HAP/PLLA/PGA | 3D printing | Tm values of PLLA decreased from 179 °C to 174 °C |
MG-63 human osteoblast-like cells | Scaffold degradation rate was increased from 3.3% to 25.0% for 28 days. Good cell adhesion and proliferation was observed. Bone defects were bridged in 8 weeks. |
[72] | PLLA/PCL/HA | Electrospinning | - | human dental pulp stem cells | HA-induced hydrophilic properties and led to improved biodegradation of fibrous membranes. Cells showed improved adhesion and proliferation capacity on the PLLA-PCL-HA nanofibers treated with MSH compared to other groups (p < 0.05) |
[58] | Chitosan/nano-HA/nano-silver particles | Freeze drying | - | Rat osteoprogenitor cells and human osteosarcoma cell line | Scaffolds were characterized using SEM, FTIR, XRD, swelling, and biodegradation studies. Scaffold showed antibacterial results with S. aureus and E. coli. Scaffold showed cytocompatiblity with rat osteoprogenitor cells and human osteosarcoma cell line. |
[73] | PLLA/Coll/HA | Electrospinning | - | MC3T3-E1 mouse osteoblasts | Composite morphology, diameter, and biodegradability was investigated. In vitro studies with MC3T3-E1 showed adhesion, proliferation, differentiation, and mineralization of cells on different nanofibrous scaffolds. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, F.; Iqbal, M. Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly(l-lactic acid)/Cyclo Olefin Copolymer. Polymers 2021, 13, 3865. https://doi.org/10.3390/polym13223865
Nazir F, Iqbal M. Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly(l-lactic acid)/Cyclo Olefin Copolymer. Polymers. 2021; 13(22):3865. https://doi.org/10.3390/polym13223865
Chicago/Turabian StyleNazir, Farzana, and Mudassir Iqbal. 2021. "Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly(l-lactic acid)/Cyclo Olefin Copolymer" Polymers 13, no. 22: 3865. https://doi.org/10.3390/polym13223865
APA StyleNazir, F., & Iqbal, M. (2021). Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly(l-lactic acid)/Cyclo Olefin Copolymer. Polymers, 13(22), 3865. https://doi.org/10.3390/polym13223865