Influence of Resin Cement Thickness and Elastic Modulus on the Stress Distribution of Zirconium Dioxide Inlay-Bridge: 3D Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of the Geometric Models
2.2. Study Design
2.3. Finite Element Analysis (FEA)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castillo-Oyagüe, R.; Sancho-Esper, R.; Lynch, C.D.; Suárez-García, M.J. All-ceramic inlay-retained fixed dental prostheses for replacing posterior missing teeth: A systematic review. J. Prosthodont. Res. 2018, 62, 10–23. [Google Scholar] [CrossRef]
- Sales, P.H.D.H.; Barros, A.W.P.; de Lima, F.J.C.; Carvalho, A.A.T.; Leão, J.C. Is down syndrome a risk factor or contraindication for dental implants? A systematic review. J. Prosthet. Dent. 2021, S0022-3913, 00348-6. [Google Scholar] [CrossRef]
- Edelhoff, D.; Sorensen, J.A. Tooth structure removal associated with various preparation designs for anterior teeth. J. Prosthet. Dent. 2002, 87, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Chaar, M.S.; Passia, N.; Kern, M. All-ceramic inlay-retained fixed dental prostheses: An update. Quintessence Int. 2015, 46, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.P.M.; Dal Piva, A.M.O.; de Melo, R.M.; Borges, A.L.S.; Bottino, M.A.; Özcan, M. Short communication: Influence of restorative material and cement on the stress distribution of posterior resin-bonded fixed dental prostheses: 3D finite element analysis. J. Mech. Behav. Biomed. Mater. 2019, 96, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Escobedo Martínez, M.F.; Rodríguez López, S.; Valdés Fontela, J.; Olay García, S.; Mauvezín Quevedo, M. A new technique for direct fabrication of fiber-reinforced composite bridge: A long-term clinical observation. Dent. J. 2020, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Alraheam, I.A.; Ngoc, C.N.; Wiesen, C.A.; Donovan, T.E. Five-year success rate of resin-bonded fixed partial dentures: A systematic review. J. Esthet. Restor. Dent. 2019, 31, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Penteado, M.M.; Tribst, J.P.M.; Jurema, A.L.B.; Saavedra, G.S.F.A.; Borges, A.L.S. Influence of resin cement rigidity on the stress distribution of resin-bonded fixed partial dentures. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 953–960. [Google Scholar] [CrossRef]
- Hammond, D.; Whitty, J. Finite element analysis and dentistry. Fac. Dent. J. 2015, 6, 134–139. [Google Scholar] [CrossRef]
- Borges, A.L.S.; Grangeiro, M.T.V.; de Andrade, G.S.; de Melo, R.M.; Baroudi, K.; Silva-Concilio, L.R.; et al. Stress concentration of endodontically treated molars restored with transfixed glass fiber post: 3D-finite element analysis. Materials 2021, 14, 4249. [Google Scholar] [CrossRef]
- Zarow, M.; Vadini, M.; Chojnacka-Brozek, A.; Szczeklik, K.; Milewski, G.; Biferi, V.; D’Arcangelo, C.; De De Angelis, F. Effect of fiber posts on stress distribution of endodontically treated upper premolars: Finite element analysis. Nanomaterials 2020, 10, 1708. [Google Scholar] [CrossRef] [PubMed]
- Köycü, B.Ç.; Imirzalioğlu, P.; Oezden, U.A. Three-dimensional finite element analysis of stress distribution in inlay-restored mandibular first molar under simultaneous thermomechanical loads. Dent. Mater. J. 2016, 35, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Güngör, M.A.; Küçük, M.; Dündar, M.; Karaoğlu, C.; Artunç, C. Effect of temperature and stress distribution on all-ceramic restorations by using a three-dimensional finite element analysis. J. Oral. Rehabil. 2004, 31, 172–178. [Google Scholar] [CrossRef]
- Bakke, M. Bite force and occlusion. Semin. Orthod. 2006, 12, 120–126. [Google Scholar] [CrossRef]
- Krupnin, A.E.; Kharakh, Y.N.; Gribov, D.A.; Arutyunov, S.D. Biomechanical analysis of new constructions of adhesive bridge prostheses. Russ. J. Biomech. 2019, 23, 362. [Google Scholar]
- Daher, E.; Zina Rahme, A.; Wehbe, T.; El Kassis, K.C.; Badr, C.; Daou, M. Study by finite elements of stress distribution by comparing behaviour of 2 types of composite. Int. J. Dent. Oral Sci. 2021, 13, 1594–1599. [Google Scholar] [CrossRef]
- Rychlewski, J. On Hooke’s law. J. Appl. Math. Mech. 1984, 48, 303–314. [Google Scholar] [CrossRef]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Borges, A.L.S.; Souza, R.O.A.E.; Bottino, M.A. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent. Mater. 2018, 34, 1342–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojpaibool, T.; Leevailoj, C. Fracture resistance of lithium disilicate ceramics bonded to enamel or dentin using different resin cement types and film thicknesses. J. Prosthodont. 2017, 26, 141–149. [Google Scholar] [CrossRef]
- Sagen, M.A.; Kvam, K.; Ruyter, E.I.; Ronold, H.J. Debonding mechanism of zirconia and lithium disilicate resin cemented to dentin. Acta Biomater. Odontol. Scand. 2019, 5, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Penteado, M.M.; Borges, A.L.S.; Bottino, M.A. Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers. Braz. Oral. Res. 2018, 32, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keulemans, F.; De Jager, N.; Kleverlaan, C.J.; Feilzer, A.J. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: An in vitro and finite element analysis study. J. Adhes. Dent. 2008, 10, 355–364. [Google Scholar]
- Tanoue, N.; Matsumura, H.; Yamamori, T.; Ohkawa, S. Longevity of resin-bonded fixed partial dentures made of metal alloys: A review of the literature. J. Prosthodont. Res. 2021, 65, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Aker Sagen, M.; Dahl, J.E.; Matinlinna, J.P.; Tibballs, J.E.; Rønold, H.J. The influence of the resin-based cement layer on ceramic-dentin bond strength. Eur. J. Oral Sci. 2021, 31, 12791. [Google Scholar]
- Madfa, A.A.; Al-Hamzi, M.A.; Al-Sanabani, F.A.; Al-Qudaimi, N.H.; Yue, X.G. 3D FEA of cemented glass fiber and cast posts with various dental cements in a maxillary central incisor. Springerplus 2015, 4, 598. [Google Scholar] [CrossRef] [Green Version]
- Zitzmann, N.U.; von Büren, A.; Glenz, F.; Rohr, N.; Joda, T.; Zaugg, L.K. Clinical outcome of metal-and all-ceramic resin-bonded fixed dental prostheses. J. Prosthodont. Res. 2021, 65, 243–248. [Google Scholar] [CrossRef]
- Jowkar, Z.; Omidi, Y.; Shafiei, F. The effect of silver nanoparticles, zinc oxide nanoparticles, and titanium dioxide nanoparticles on the push-out bond strength of fiber posts. J. Clin. Exp. Dent. 2020, 12, 249. [Google Scholar]
- Gumus, H.S.; Polat, N.T.; Yildirim, G. Evaluation of fracture resistance of inlay-retained fixed partial dentures fabricated with different monolithic zirconia materials. J. Prosthet. Dent. 2018, 119, 959–964. [Google Scholar] [CrossRef]
- Trindade, F.Z.; Valandro, L.F.; de Jager, N.; Bottino, M.A.; Kleverlaan, C.J. Elastic properties of lithium disilicate versus feldspathic inlays: Effect on the bonding by 3D finite element analysis. J. Prosthodont. 2018, 27, 741–747. [Google Scholar] [CrossRef]
- Tatarciuc, M.; Maftei, G.A.; Vitalariu, A.; Luchian, I.; Martu, I.; Diaconu-Popa, D. Inlay-retained dental bridges—A finite elementanalysis. Appl. Sci. 2021, 11, 3770. [Google Scholar] [CrossRef]
- Altan, B.; Cinar, S.; Tuncelli, B. Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Niger. J. Clin. Pract. 2019, 22, 1475. [Google Scholar] [CrossRef]
- Nasr, E.; Makhlouf, A.C.; Zebouni, E.; Makzoumé, J. All-ceramic Computer-aided Design and Computer-aided Manufacturing Restorations: Evolution of Structures and Criteria for Clinical Application. J. Contemp. Dent. Pract. 2019, 20, 516–523. [Google Scholar] [PubMed]
- Go, E.J.; Shin, Y.; Park, J.W. Evaluation of the microshear bond strength of MDP-containing and non–MDP-containing self-adhesive resin cement on zirconia restoration. Oper. Dent. 2019, 44, 379–385. [Google Scholar] [CrossRef]
- Lakshmi, R.D.; Abraham, A.; Sekar, V.; Hariharan, A. Influence of connector dimensions on the stress distribution of monolithic zirconia and lithium-di-silicate inlay retained fixed dental prostheses—A 3D finite element analysis. Tanta Dent. J. 2015, 12, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Onodera, K.; Sato, T.; Nomoto, S.; Miho, O.; Yotsuya, M. Effect of connector design on fracture resistance of zirconia all-ceramic fixed partial dentures. Bull. Tokyo Dent. Coll. 2011, 52, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Versluis, A.; Tantbirojn, D.; Pintado, M.R.; DeLong, R.; Douglas, W.H. Residual shrinkage stress distributions in molars after composite restoration. Dent. Mater. 2004, 20, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.A.; Diana, H.H.; Oliveira, J.S.; Silva-Sousa, Y.T.; Faria, A.C.; Ribeiro, R.F. Reliability of FEA on the Results of Mechanical Properties of Materials. Braz. Dent. J. 2015, 26, 667–670. [Google Scholar] [CrossRef]
Materials | Elastic Modulus (GPa) | Poisson’s Ratio |
---|---|---|
Zirconium dioxide | 200 | 0.31 |
Enamel | 84.1 | 0.33 |
Dentin | 18.6 | 0.32 |
Resin cement (Panavia F2.0) | 12 | 0.33 |
Resin cement (Variolink II Ivoclar) | 8.3 | 0.24 |
Periodontal ligament | 0.069 | 0.45 |
Spongious bone | 1.37 | 0.30 |
Cortical bone | 13.7 | 0.30 |
Study Group | Type of Cement | Cement Thickness |
---|---|---|
Panavia 0.2 | Panavia F2.0 (Kuraray Dental, Tokyo, Japan) | 0.2 mm |
Panavia 0.4 | 0.4 mm | |
Variolink 0.2 | Variolink II (Ivoclar Vivadent Inc, Amherst, NY, USA) | 0.2 mm |
Variolink 0.4 | 0.4 mm |
Cement Thickness | |||
---|---|---|---|
0.2 mm | 0.4 mm | ||
Inlay bridge | Variolink | ||
Panavia | |||
Cement layer | Variolink | ||
Panavia |
Cement Thickness | |||
---|---|---|---|
0.2 mm | 0.4 mm | ||
Inlay bridge | Variolink | ||
Panavia | |||
Cement layer | Variolink | ||
Panavia |
Study Groups | 0.2 mm | 0.4 mm | ||
---|---|---|---|---|
Stress Distribution (Pa) | Maximum Deformation (m) | Stress Distribution (Pa) | Maximum Deformation (m) | |
Panavia | 1.07 × 106 | 2.95 × 10−4 | 1.45 × 106 | 2.33 × 10−4 |
Variolink | 1.12 × 106 | 3.36 × 10−4 | 1.76 × 106 | 2.84 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assaf, J.; Hardan, L.; Kassis, C.; Bourgi, R.; Devoto, W.; Amm, E.; Moussa, C.; Sawicki, J.; Lukomska-Szymanska, M. Influence of Resin Cement Thickness and Elastic Modulus on the Stress Distribution of Zirconium Dioxide Inlay-Bridge: 3D Finite Element Analysis. Polymers 2021, 13, 3863. https://doi.org/10.3390/polym13223863
Assaf J, Hardan L, Kassis C, Bourgi R, Devoto W, Amm E, Moussa C, Sawicki J, Lukomska-Szymanska M. Influence of Resin Cement Thickness and Elastic Modulus on the Stress Distribution of Zirconium Dioxide Inlay-Bridge: 3D Finite Element Analysis. Polymers. 2021; 13(22):3863. https://doi.org/10.3390/polym13223863
Chicago/Turabian StyleAssaf, Joseph, Louis Hardan, Cynthia Kassis, Rim Bourgi, Walter Devoto, Elie Amm, Carol Moussa, Jacek Sawicki, and Monika Lukomska-Szymanska. 2021. "Influence of Resin Cement Thickness and Elastic Modulus on the Stress Distribution of Zirconium Dioxide Inlay-Bridge: 3D Finite Element Analysis" Polymers 13, no. 22: 3863. https://doi.org/10.3390/polym13223863
APA StyleAssaf, J., Hardan, L., Kassis, C., Bourgi, R., Devoto, W., Amm, E., Moussa, C., Sawicki, J., & Lukomska-Szymanska, M. (2021). Influence of Resin Cement Thickness and Elastic Modulus on the Stress Distribution of Zirconium Dioxide Inlay-Bridge: 3D Finite Element Analysis. Polymers, 13(22), 3863. https://doi.org/10.3390/polym13223863