Syngas Fermentation for the Production of Bio-Based Polymers: A Review
Abstract
:1. Introduction
2. Limitations of Conventional Techniques for the Utilization of Lignocellulosic Biomass
3. Biomass Gasification
4. Syngas Reforming
5. Biochemical Pathways for Syngas Utilization
6. Process Optimization for Syngas Fermentation
7. Polyhydroxyalkanoates (PHAs) and Their Biochemical Production
8. Syngas to PHAs
8.1. Monoculture
8.2. Mixed Culture
9. Challenges and Perspective
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acharya, B.; Roy, P.; Dutta, A. Review of Syngas Fermentation Processes for Bioethanol. Biofuels 2014, 5, 551–564. [Google Scholar] [CrossRef]
- Daniell, J.; Köpke, M.; Simpson, S. Commercial Biomass Syngas Fermentation. Energies 2012, 5, 5372–5417. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Atiyeh, H.K.; Huhnke, R.L.; Tanner, R.S. Syngas Fermentation Process Development for Production of Biofuels and Chemicals: A Review. Bioresour. Technol. Rep. 2019, 7, 100279. [Google Scholar] [CrossRef]
- Couto, N.; Rouboa, A.; Silva, V.; Monteiro, E.; Bouziane, K. Influence of the Biomass Gasification Processes on the Final Composition of Syngas. Energy Procedia 2013, 36, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Drzyzga, O.; Revelles, O.; Durante-Rodríguez, G.; Díaz, E.; García, J.L.; Prieto, A. New Challenges for Syngas Fermentation: Towards Production of Biopolymers: New Challenges for Syngas Fermentation. J. Chem. Technol. Biotechnol. 2015, 90, 1735–1751. [Google Scholar] [CrossRef]
- Liu, K.; Atiyeh, H.K.; Stevenson, B.S.; Tanner, R.S.; Wilkins, M.R.; Huhnke, R.L. Mixed Culture Syngas Fermentation and Conversion of Carboxylic Acids into Alcohols. Bioresour. Technol. 2014, 152, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Diender, M.; Stams, A.J.M.; Sousa, D.Z. Production of Medium-Chain Fatty Acids and Higher Alcohols by a Synthetic Co-Culture Grown on Carbon Monoxide or Syngas. Biotechnol. Biofuels 2016, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Richter, H.; Molitor, B.; Diender, M.; Sousa, D.Z.; Angenent, L.T. A Narrow PH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-Culture of Clostridium Ljungdahlii and Clostridium Kluyveri with In-Line Product Extraction. Front. Microbiol. 2016, 7, 1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, Y.S.; Smeenk, J.; Broer, K.M.; Kisting, C.J.; Brown, R.; Heindel, T.J.; Bobik, T.A.; DiSpirito, A.A. Growth OfRhodospirillum Rubrum on Synthesis Gas: Conversion of CO to H2 and Poly-β-Hydroxyalkanoate. Biotechnol. Bioeng. 2007, 97, 279–286. [Google Scholar] [CrossRef]
- Koller, M. A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. Fermentation 2018, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzym. Res. 2011, 2011, 787532. [Google Scholar] [CrossRef]
- Kennes, D.; Abubackar, H.N.; Diaz, M.; Veiga, M.C.; Kennes, C. Bioethanol Production from Biomass: Carbohydrate vs Syngas Fermentation. J. Chem. Technol. Biotechnol. 2016, 91, 304–317. [Google Scholar] [CrossRef]
- Sánchez, C. Lignocellulosic Residues: Biodegradation and Bioconversion by Fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- McIntosh, S.; Vancov, T. Enhanced Enzyme Saccharification of Sorghum Bicolor Straw Using Dilute Alkali Pretreatment. Bioresour. Technol. 2010, 101, 6718–6727. [Google Scholar] [CrossRef]
- Saha, B.C.; Iten, L.B.; Cotta, M.A.; Wu, Y.V. Dilute Acid Pretreatment, Enzymatic Saccharification, and Fermentation of Rice Hulls to Ethanol. Biotechnol. Prog. 2005, 21, 816–822. [Google Scholar] [CrossRef]
- Xu, D.; Tree, D.R.; Lewis, R.S. The Effects of Syngas Impurities on Syngas Fermentation to Liquid Fuels. Biomass Bioenergy 2011, 35, 2690–2696. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 3): Gasification Technologies. Bioresour. Technol. 2002, 83, 55–63. [Google Scholar] [CrossRef]
- Demirbaş, A. Hydrogen Production from Biomass by the Gasification Process. Energy Sources 2002, 24, 59–68. [Google Scholar] [CrossRef]
- Ahmed, A.; Cateni, B.G.; Huhnke, R.L.; Lewis, R.S. Effects of Biomass-Generated Producer Gas Constituents on Cell Growth, Product Distribution and Hydrogenase Activity of Clostridium Carboxidivorans P7T. Biomass Bioenergy 2006, 30, 665–672. [Google Scholar] [CrossRef]
- Torres, W.; Pansare, S.S.; Goodwin, J.G. Hot Gas Removal of Tars, Ammonia, and Hydrogen Sulfide from Biomass Gasification Gas. Catal. Rev. 2007, 49, 407–456. [Google Scholar] [CrossRef]
- Hyman, M.R.; Ensign, S.A.; Arp, D.J.; Ludden, P.W. Carbonyl Sulfide Inhibition of CO Dehydrogenase from Rhodospirillum Rubrum. Biochemistry 1989, 28, 6821–6826. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B. Cleaning of Product Gas of Gasification. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory; Basu, P., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 373–391. [Google Scholar]
- Ciliberti, C.; Biundo, A.; Albergo, R.; Agrimi, G.; Braccio, G.; de Bari, I.; Pisano, I. Syngas Derived from Lignocellulosic Biomass Gasification as an Alternative Resource for Innovative Bioprocesses. Processes 2020, 8, 1567. [Google Scholar] [CrossRef]
- Phillips, J.; Huhnke, R.; Atiyeh, H. Syngas Fermentation: A Microbial Conversion Process of Gaseous Substrates to Various Products. Fermentation 2017, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Lawther, J.M.; Banks, W.B. Influence of Alkaline Pre-Treatments on the Cell Wall Components of Wheat Straw. Ind. Crop. Prod. 1995, 4, 127–145. [Google Scholar] [CrossRef]
- Revelles, O.; Tarazona, N.; García, J.L.; Prieto, M.A. Carbon Roadmap from Syngas to Polyhydroxyalkanoates in Rhodospirillum rubrum: CO Metabolism in Rhodospirillum rubrum. Environ. Microbiol. 2016, 18, 708–720. [Google Scholar] [CrossRef] [Green Version]
- Stoll, I.K.; Boukis, N.; Sauer, J. Syngas Fermentation to Alcohols: Reactor Technology and Application Perspective. Chem. Ing. Tech. 2020, 92, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Cotter, J.L.; Chinn, M.S.; Grunden, A.M. Ethanol and Acetate Production by Clostridium Ljungdahlii and Clostridium Autoethanogenum Using Resting Cells. Bioprocess Biosyst. Eng. 2009, 32, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.; Remondet, N.; Atiyeh, H.; Wilkins, M.; Huhnke, R. Designing Syngas Fermentation Medium for Fuels and Bulk Chemicals Production. In Proceedings of the 2011 ASABE Annual International Meeting, Louisville, KY, USA, 1 January 2011; pp. 1–12. [Google Scholar]
- Abubackar, H.N.; Veiga, M.C.; Kennes, C. Biological Conversion of Carbon Monoxide: Rich Syngas or Waste Gases to Bioethanol. Biofuels Bioprod. Bioref. 2011, 5, 93–114. [Google Scholar] [CrossRef] [Green Version]
- Thi, H.N.; Park, S.; Li, H.; Kim, Y.-K. Medium Compositions for the Improvement of Productivity in Syngas Fermentation with Clostridium Autoethanogenum. Biotechnol. Bioprocess Eng. 2020, 25, 493–501. [Google Scholar] [CrossRef]
- Liu, K.; Atiyeh, H.K.; Stevenson, B.S.; Tanner, R.S.; Wilkins, M.R.; Huhnke, R.L. Continuous Syngas Fermentation for the Production of Ethanol, n-Propanol and n-Butanol. Bioresour. Technol. 2014, 151, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Atiyeh, H.K.; Kumar, A.; Zhang, H.; Tanner, R.S. Biochar Enhanced Ethanol and Butanol Production by Clostridium Carboxidivorans from Syngas. Bioresour. Technol. 2018, 265, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Atiyeh, H.K.; Zhang, H.; Tanner, R.S.; Huhnke, R.L. Enhanced Ethanol Production from Syngas by Clostridium Ragsdalei in Continuous Stirred Tank Reactor Using Medium with Poultry Litter Biochar. Appl. Energy 2019, 236, 1269–1279. [Google Scholar] [CrossRef]
- Gao, J.; Atiyeh, H.K.; Phillips, J.R.; Wilkins, M.R.; Huhnke, R.L. Development of Low Cost Medium for Ethanol Production from Syngas by Clostridium Ragsdalei. Bioresour. Technol. 2013, 147, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Kundiyana, D.K.; Huhnke, R.L.; Wilkins, M.R. Effect of Nutrient Limitation and Two-Stage Continuous Fermentor Design on Productivities during “Clostridium Ragsdalei” Syngas Fermentation. Bioresour. Technol. 2011, 102, 6058–6064. [Google Scholar] [CrossRef]
- Saxena, J.; Tanner, R.S. Optimization of a Corn Steep Medium for Production of Ethanol from Synthesis Gas Fermentation by Clostridium Ragsdalei. World J. Microbiol. Biotechnol. 2012, 28, 1553–1561. [Google Scholar] [CrossRef]
- Saxena, J.; Tanner, R.S. Effect of Trace Metals on Ethanol Production from Synthesis Gas by the Ethanologenic Acetogen, Clostridium Ragsdalei. J. Ind. Microbiol. Biotechnol. 2011, 38, 513–521. [Google Scholar] [CrossRef]
- Richter, H.; Martin, M.; Angenent, L. A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol. Energies 2013, 6, 3987–4000. [Google Scholar] [CrossRef] [Green Version]
- Sim, J.H.; Kamaruddin, A.H.; Long, W.S.; Najafpour, G. Clostridium Aceticum—A Potential Organism in Catalyzing Carbon Monoxide to Acetic Acid: Application of Response Surface Methodology. Enzym. Microb. Technol. 2007, 40, 1234–1243. [Google Scholar] [CrossRef]
- Hurst, K.M.; Lewis, R.S. Carbon Monoxide Partial Pressure Effects on the Metabolic Process of Syngas Fermentation. Biochem. Eng. J. 2010, 48, 159–165. [Google Scholar] [CrossRef]
- Skidmore, B.E.; Baker, R.A.; Banjade, D.R.; Bray, J.M.; Tree, D.R.; Lewis, R.S. Syngas Fermentation to Biofuels: Effects of Hydrogen Partial Pressure on Hydrogenase Efficiency. Biomass Bioenergy 2013, 55, 156–162. [Google Scholar] [CrossRef]
- Demler, M.; Weuster-Botz, D. Reaction Engineering Analysis of Hydrogenotrophic Production of Acetic Acid by Acetobacterium Woodii. Biotechnol. Bioeng. 2011, 108, 470–474. [Google Scholar] [CrossRef]
- Munasinghe, P.C.; Khanal, S.K. Syngas Fermentation to Biofuel: Evaluation of Carbon Monoxide Mass Transfer Coefficient (KLa) in Different Reactor Configurations. Biotechnol. Prog. 2010, 26, 1616–1621. [Google Scholar] [CrossRef]
- Orgill, J.J.; Atiyeh, H.K.; Devarapalli, M.; Phillips, J.R.; Lewis, R.S.; Huhnke, R.L. A Comparison of Mass Transfer Coefficients between Trickle-Bed, Hollow Fiber Membrane and Stirred Tank Reactors. Bioresour. Technol. 2013, 133, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Ungerman, A.J.; Heindel, T.J. Carbon Monoxide Mass Transfer for Syngas Fermentation in a Stirred Tank Reactor with Dual Impeller Configurations. Biotechnol. Prog. 2008, 23, 613–620. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Lee, H. Use of Magnetic Nanoparticles to Enhance Bioethanol Production in Syngas Fermentation. Bioresour. Technol. 2016, 204, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Atiyeh, H.K.; Lewis, R.S.; Phillips, J.R.; Huhnke, R.L. Method Improving Producer GAS Fermentation. U.S. Patent 10,053,711 B2, 21 August 2018. [Google Scholar]
- Sun, X.; Atiyeh, H.K.; Kumar, A.; Zhang, H. Enhanced Ethanol Production by Clostridium Ragsdalei from Syngas by Incorporating Biochar in the Fermentation Medium. Bioresour. Technol. 2018, 247, 291–301. [Google Scholar] [CrossRef]
- Obruca, S.; Sedlacek, P.; Koller, M.; Kucera, D.; Pernicova, I. Involvement of Polyhydroxyalkanoates in Stress Resistance of Microbial Cells: Biotechnological Consequences and Applications. Biotechnol. Adv. 2018, 36, 856–870. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Hajnal, I.; Wu, H.; Lv, L.; Ye, J. Engineering Biosynthesis Mechanisms for Diversifying Polyhydroxyalkanoates. Trends Biotechnol. 2015, 33, 565–574. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.; Wu, Q.; Wang, Y.; Chen, G.-Q. Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering. Trends Biotechnol. 2020, 38, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, D.; Raberg, M.; Fricke, P.; Kenny, S.T.; Morales-Gamez, L.; Babu, R.P.; O’Connor, K.E.; Steinbüchel, A. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum Rubrum. Appl. Environ. Microbiol. 2016, 82, 6132–6140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandl, H.; Jr, E.J.K.; Fuller, R.C.; Gross, R.A.; Lenz, R.W. Ability of the Phototrophic Bacterium Rhodospirillum Rubrum to Produce Various Poly (Fl-Hydroxyalkanoates): Potential Sources for Biodegradable Polyesters. Int. J. Biol. Macromol. 1989, 11, 49–55. [Google Scholar] [CrossRef]
- Koller, M.; Maršálek, L.; de Sousa Dias, M.M.; Braunegg, G. Producing Microbial Polyhydroxyalkanoate (PHA) Biopolyesters in a Sustainable Manner. New Biotechnol. 2017, 37, 24–38. [Google Scholar] [CrossRef]
- Revelles, O.; Beneroso, D.; Menéndez, J.A.; Arenillas, A.; García, J.L.; Prieto, M.A. Syngas Obtained by Microwave Pyrolysis of Household Wastes as Feedstock for Polyhydroxyalkanoate Production in Rhodospirillum rubrum. Microb. Biotechnol. 2017, 10, 1412–1417. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, B.; Buhrke, T.; Burgdorf, T.; Lenz, O. A Hydrogen-Sensing Multiprotein Complex Controls Aerobic Hydrogen Metabolism in Ralstonia Eutropha. Biochem. Soc. Trans. 2005, 33, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, U.; Probst, I.; Schlegel, H.G. The Cytochromes of Some Hydrogen Bacteria. Arch. Microbiol. 1974, 95, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Cypionka, H.; Meyer, O. Influence of Carbon Monoxide on Growth and Respiration of Carboxydobacteria and Other Aerobic Organisms. FEMS Microbiol. Lett. 1982, 15, 209–214. [Google Scholar] [CrossRef]
- Heinrich, D.; Raberg, M.; Steinbüchel, A. Studies on the Aerobic Utilization of Synthesis Gas (Syngas) by Wild Type and Recombinant Strains of Ralstonia Eutropha H16. Microb. Biotechnol. 2018, 11, 647–656. [Google Scholar] [CrossRef]
- Koller, M.; Chiellini, E.; Braunegg, G. Study on the Production and Re-Use of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) and Extracellular Polysaccharide by the Archaeon Haloferax Mediterranei Strain DSM 1411. Chem. Biochem. Eng. Q. 2015, 29, 87–98. [Google Scholar] [CrossRef]
- Sim, J.H.; Kamaruddin, A.H. Optimization of Acetic Acid Production from Synthesis Gas by Chemolithotrophic Bacterium-Clostridium Aceticum Using Statistical Approach. Bioresour. Technol. 2008, 99, 2724–2735. [Google Scholar] [CrossRef]
- Marudkla, J.; Lee, W.-C.; Wannawilai, S.; Chisti, Y.; Sirisansaneeyakul, S. Model of Acetic Acid-Affected Growth and Poly(3-Hydroxybutyrate) Production by Cupriavidus Necator DSM 545. J. Biotechnol. 2018, 268, 12–20. [Google Scholar] [CrossRef]
- He, P.; Han, W.; Shao, L.; Lü, F. One-Step Production of C6–C8 Carboxylates by Mixed Culture Solely Grown on CO. Biotechnol. Biofuels 2018, 11, 4. [Google Scholar] [CrossRef]
- Gildemyn, S.; Molitor, B.; Usack, J.G.; Nguyen, M.; Rabaey, K.; Angenent, L.T. Upgrading Syngas Fermentation Effluent Using Clostridium Kluyveri in a Continuous Fermentation. Biotechnol. Biofuels 2017, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Köpke, M.; Mihalcea, C.; Liew, F.; Tizard, J.H.; Ali, M.S.; Conolly, J.J.; Al-Sinawi, B.; Simpson, S.D. 2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas. Appl. Environ. Microbiol. 2011, 77, 5467–5475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, R.S.; Miller, L.M.; Yang, D. Clostridium Ljungdahlii Sp. Nov., an Acetogenic Species in Clostridial RRNA Homology Group I. Int. J. Syst. Evol. Bacteriol. 1993, 43, 232–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, J.S.-C.; Balkwill, D.L.; Drake, G.R.; Tanner, R.S. Clostridium carboxidivorans sp. nov., a Solvent-Producing Clostridium Isolated from an Agricultural Settling Lagoon, and Reclassification of the Acetogen Clostridium scatologenes Strain SL1 as Clostridium drakei sp. nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 2085–2091. [Google Scholar] [CrossRef]
- Grethlein, A.J.; Worden, R.M.; Jain, M.K.; Datta, R. Evidence for Production of N-Butanol from Carbon Monoxide by Butyribacterium Methylotrophicum. J. Ferment. Bioeng. 1991, 72, 58–60. [Google Scholar] [CrossRef]
- Genthner, B.R.; Davis, C.L.; Bryant, M.P. Features of Rumen and Sewage Sludge Strains of Eubacterium Limosum, a Methanol- and H2-CO2-Utilizing Species. Appl. Environ. Microbiol. 1981, 42, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Ammam, F.; Tremblay, P.-L.; Lizak, D.M.; Zhang, T. Effect of Tungstate on Acetate and Ethanol Production by the Electrosynthetic Bacterium Sporomusa Ovata. Biotechnol. Biofuels 2016, 9, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorowitz, W.H.; Bryant, M.P. Peptostreptococcus Productus Strain That Grows Rapidly with CO as the Energy Source. Appl. Environ. Microbiol 1984, 47, 961–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bents, S.C. A Techno-Economic Analysis of Syngas Fermentation for the Production of Hydrogen and Polyhydroxyalkanoate; Master of Science, Iowa State University, Digital Repository: Ames, IA, USA, 2007; p. 6997465. [Google Scholar]
- López, J.C.; Arnáiz, E.; Merchán, L.; Lebrero, R.; Muñoz, R. Biogas-Based Polyhydroxyalkanoates Production by Methylocystis Hirsuta: A Step Further in Anaerobic Digestion Biorefineries. Chem. Eng. J. 2018, 333, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Kovalcik, A.; Meixner, K.; Mihalic, M.; Zeilinger, W.; Fritz, I.; Fuchs, W.; Kucharczyk, P.; Stelzer, F.; Drosg, B. Characterization of Polyhydroxyalkanoates Produced by Synechocystis Salina from Digestate Supernatant. Int. J. Biol. Macromol. 2017, 102, 497–504. [Google Scholar] [CrossRef]
- Daniel, S.L.; Hsu, T.; Dean, S.I.; Drake, H.L. Characterization of the H2- and CO-Dependent Chemolithotrophic Potentials of the Acetogens Clostridium Thermoaceticum and Acetogenium Kivui. J. Bacteriol. 1990, 172, 4464–4471. [Google Scholar] [CrossRef] [Green Version]
- Wiegel, J.; Braun, M.; Gottschalk, G. Clostridium Thermoautotrophicum Species Novum, a Thermophile Producing Acetate from Molecular Hydrogen and Carbon Dioxide. Curr. Microbiol. 1981, 5, 255–260. [Google Scholar] [CrossRef]
- Alves, J.I.; van Gelder, A.H.; Alves, M.M.; Sousa, D.Z.; Plugge, C.M. Moorella stamsii sp. nov., a New Anaerobic Thermophilic Hydrogenogenic Carboxydotroph Isolated from Digester Sludge. Int. J. Syst. Evol. Microbiol. 2013, 63, 4072–4076. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, D.; Richter, H.; Angenent, L.T. Upgrading Dilute Ethanol from Syngas Fermentation to N-Caproate with Reactor Microbiomes. Bioresour. Technol. 2014, 151, 378–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oswald, F.; Dörsam, S.; Veith, N.; Zwick, M.; Neumann, A.; Ochsenreither, K.; Syldatk, C. Sequential Mixed Cultures: From Syngas to Malic Acid. Front. Microbiol. 2016, 7, 891. [Google Scholar] [CrossRef]
- Hu, P.; Chakraborty, S.; Kumar, A.; Woolston, B.; Liu, H.; Emerson, D.; Stephanopoulos, G. Integrated Bioprocess for Conversion of Gaseous Substrates to Liquids. Proc. Natl. Acad. Sci. USA 2016, 113, 3773–3778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagoa-Costa, B.; Abubackar, H.N.; Fernández-Romasanta, M.; Kennes, C.; Veiga, M.C. Integrated Bioconversion of Syngas into Bioethanol and Biopolymers. Bioresour. Technol. 2017, 239, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.W.; Yoon, J.; Min, K.; Kim, M.-S.; Kim, S.-J.; Cho, D.H.; Susila, H.; Na, J.-G.; Oh, M.-K.; Kim, Y.H. Two-Stage Bioconversion of Carbon Monoxide to Biopolymers via Formate as an Intermediate. Chem. Eng. J. 2020, 389, 124394. [Google Scholar] [CrossRef]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dircks, K.; Beun, J.J.; van Loosdrecht, M.; Heijnen, J.J.; Henze, M. Glycogen Metabolism in Aerobic Mixed Cultures. Biotechnol. Bioeng. 2001, 73, 85–94. [Google Scholar] [CrossRef]
- Johnson, K.; Jiang, Y.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M. Enrichment of a Mixed Bacterial Culture with a High Polyhydroxyalkanoate Storage Capacity. Biomacromolecules 2009, 10, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, Z.; Wen, Q.; Lee, D.-J. Enhanced Polyhydroxyalkanoate Production by Mixed Microbial Culture with Extended Cultivation Strategy. Bioresour. Technol. 2017, 241, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Colombo, B.; Favini, F.; Scaglia, B.; Sciarria, T.P.; D’Imporzano, G.; Pognani, M.; Alekseeva, A.; Eisele, G.; Cosentino, C.; Adani, F. Enhanced Polyhydroxyalkanoate (PHA) Production from the Organic Fraction of Municipal Solid Waste by Using Mixed Microbial Culture. Biotechnol. Biofuels 2017, 10, 201. [Google Scholar] [CrossRef]
- Duque, A.F.; Oliveira, C.S.S.; Carmo, I.T.D.; Gouveia, A.R.; Pardelha, F.; Ramos, A.M.; Reis, M.A.M. Response of a Three-Stage Process for PHA Production by Mixed Microbial Cultures to Feedstock Shift: Impact on Polymer Composition. New Biotechnol. 2014, 31, 276–288. [Google Scholar] [CrossRef]
- Albuquerque, M.G.E.; Martino, V.; Pollet, E.; Avérous, L.; Reis, M.A.M. Mixed Culture Polyhydroxyalkanoate (PHA) Production from Volatile Fatty Acid (VFA)-Rich Streams: Effect of Substrate Composition and Feeding Regime on PHA Productivity, Composition and Properties. J. Biotechnol. 2011, 151, 66–76. [Google Scholar] [CrossRef]
- Polyhydroxyalkanoate (PHA) Market. Global Forecast to 2025|MarketsandMarkets. Available online: https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html (accessed on 17 September 2021).
Impurities | Targeted Enzyme | Effect | References |
---|---|---|---|
Ammonia (NH3) | Alcohol dehydrogenase (ADH), amidase | ADH inhibition at very high concentrations | [17] |
Nitric oxide | Hydrogenase, ADH | 100% inhibition of ADH at 0.015 mol%; no effect at 0.004 mol% | [20] |
Nitrogen dioxide (NO2) | Formate dehydrogenase (FDH), nitrate reductase | 5% inhibition for FDH and 20% inhibition of nitrate reductase at 1 mol/m3 | [21] |
Hydrogen sulfide (H2S) | Thiosulfate sulfurtransferase (TS), L-ascorbate oxidase (LAO) | >30 mol/m3 for TS and 1 mol/m3 for 97% inhibition for LAO | [17] |
Carbonyl sulfide (COS) | Carbon monoxide dehydrogenase (CODH) | [22] | |
Sulfur dioxide (SO2) | Ascorbic acid oxidase (AAO) | [17] |
Microorganisms | Growth pH | Growth Temperature (°C) | Substrate | Products | Reference |
---|---|---|---|---|---|
Monoculture | |||||
Acetobacterium woodii | 6.8 | 30 | CO/H2/CO2 | Acetate | [45] |
Clostridium ragsdalei | 5.0–7.5 | 25–40 | CO/H2/CO2 | Acetate, ethanol, 2,3-butanediol | [67] |
Clostridium autoethanogenum | 4.5–6.5 | 20–44 | CO/H2/CO2 | Acetate, ethanol, 2,3-butanediol | [67] |
Clostridium ljungdahlii | 4.0–6.0 | 30–40 | CO/H2/CO2/N2 | Acetate, ethanol, 2,3-butanediol, formic acid | [40,68] |
Clostridium carboxidivorans | 4.4–7.6 | 24–42 | CO/CO2/H2 | Acetate, ethanol, butyrate, butanol, caproate, hexanol | [69] |
Clostridium drakei | 4.6–7.8 | 18–42 | CO/CO2/H2 | Acetate, ethanol, butyrate, butanol | [69] |
Clostridium scatologenes | 4.6–8.0 | 18–42 | CO/CO2/H2 | Acetate, butyrate | [69] |
Alkalibaculum bacchi | 6.5–10.5 | 15–40 | CO/CO2/H2 | Acetate, ethanol | [33] |
Butyribacterium methylotrophicum | 5.5–6.0 | 37 | CO | Acetate, ethanol, butyrate, butanol | [70] |
Eubacterium limosum | 7.0–7.2 | 38–39 | CO2/H2 | Acetate, butyrate | [71] |
Sporomusa ovate | 5.0–8.1 | 15–45 | CO2/H2 | Acetate, ethanol | [72] |
Peptostreptococcus productus | 7 | 37 | CO/H2/CO2/N2 | Acetate | [73] |
Rhodospirillum rubrum | - | 25–30 | Syngas | PHA, H2 | [57,74] |
Methylocystis Hirsuta | 6.8 | 25 | CH4/CO2/H2S | PHA | [75] |
Synechocystis salina | 6.7 | 20 | CO2 | PHA | [76] |
Thermophiles | |||||
Acetogenium Kivui | 6.4 | 66 | CO/H2/CO2/N2 | Acetate | [77] |
Clostridium thermoaceticum | 55 | CO/H2/CO2/N2 | Acetate | [77] | |
Clostridium thermoautotrophicum | 5.7 | 36–70 | CO2/H2 | Acetate | [78] |
Moorella stamsii | 5.7–8.0 | 50–70 | CO | Acetate, H2 | [79] |
Mixed culture | |||||
Alkalibacterium bacchi & Clostridium propionicum | 6.0–8.0 | 37 | CO/CO2/H2 | Acetate, butyrate, propionate, ethanol, butanol, propanol, hexanol | [6] |
Clostridium autoethanogenum & Clostridium kluyveri | 5.5–6.5 | 37 | CO/CO2/H2 | Acetate, butyrate, caproate, ethanol, butanol, hexanol | [7] |
Clostridium lungdahii & Clostridium kluyveri | 5.7–6.4 | 35 | Syngas | Acetate, butyrate, caproate, ethanol, butanol, hexanol, 2,3-butanediol, octanol | [8] |
Multi-stage culture | |||||
Elongation of carboxylic acids | |||||
Clostridium ljungdahlii (stage 1) | N.A. | N.A. | CO/CO2/H2 | Acetate, ethanol | [80] |
Mixed culture (stage 2) | 5.5–6.5 | 30 | Fermentation effluent | Acetic acid, butyric acid, caproic acid | |
Dicarboxylic (malic) acid production | |||||
Clostridium ljungdahlii (stage 1) | 5.9 | 37 | CO/H2/CO2/N2 | Ethanol, acetate | [81] |
Aspergillus oryzae (stage 2) | 6.5 | 35 | Fermentation effluent | Malic acid | |
Lipid production | |||||
Moorella thermoacetica (stage 1) | 6 | 60 | CO/CO2/H2 | Acetate | [82] |
Yarrowia lipolytica (stage 2) | 7.3 | 35 | Fermentation effluent | Lipids | |
Polyhydroxyalkanoate (PHA) production | |||||
Clostridium autoethanogenum (stage 1) | 5.75 | 30 | CO/H2/CO2/N2 | Acetate, ethanol, 2,3-butanediol | [83] |
Mixed microbial consortia (MMC) (stage 2) | NA | 30 | Fermentation effluent | PHA | |
PHA production | |||||
Acetobacterium woodii (stage 1) | N.A. | N.A. | CO/N2 | Formate | [84] |
Methylorubrum extroquens (stage 2) | N.A. | N.A. | Fermentation effluent | PHA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, N.; Acharya, B. Syngas Fermentation for the Production of Bio-Based Polymers: A Review. Polymers 2021, 13, 3917. https://doi.org/10.3390/polym13223917
Dhakal N, Acharya B. Syngas Fermentation for the Production of Bio-Based Polymers: A Review. Polymers. 2021; 13(22):3917. https://doi.org/10.3390/polym13223917
Chicago/Turabian StyleDhakal, Nirpesh, and Bishnu Acharya. 2021. "Syngas Fermentation for the Production of Bio-Based Polymers: A Review" Polymers 13, no. 22: 3917. https://doi.org/10.3390/polym13223917
APA StyleDhakal, N., & Acharya, B. (2021). Syngas Fermentation for the Production of Bio-Based Polymers: A Review. Polymers, 13(22), 3917. https://doi.org/10.3390/polym13223917