The Discovery of the Buffer Capacity of Various Types of Polyelectrolyte Microcapsules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CaCO3 Microspherulites
2.3. Preparation of Polyelectrolyte Microcapsules
2.4. Measurement of Buffering Capacity
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunkeler, D.; Wandrey, C. Polyelectrolytes: Research, Development, and Applications. Chim. Int. J. Chem. 2001, 55, 223–227. [Google Scholar]
- Moore, N.M.; Sheppard, C.L.; Barbour, T.R.; Sakiyama-Elbert, S.E. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles. J. Gene. Med. 2008, 10, 1134–1149. [Google Scholar] [CrossRef]
- Benjaminsen, R.V.; Mattebjerg, M.A.; Henriksen, J.R.; Moghimi, S.M.; Andresen, T.L. The Possible “Proton Sponge” Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH. Mol. Ther. 2013, 21, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Gibney, K.A.; Sovadinova, I.; Lopez, A.I.; Urban, M.; Ridgway, Z.; Caputo, G.A.; Kuroda, K. Poly (ethylene imine) s as Antimicrobial Agents with Selective Activity. Macromol. Biosci. 2012, 12, 1279–1289. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, T.; Takaoka, T.; Katsuta, H. A polyelectrolyte buffer system for bacterial and mammalian cell culture. Exp. Cell Res. 1968, 53, 337–347. [Google Scholar] [CrossRef]
- Andreeva, D.V.; Fix, D.; Möhwald, H.; Shchukin, D.G. Self-Healing Anticorrosion Coatings Based on pH-Sensitive Polyelectrolyte/Inhibitor Sandwichlike Nanostructures. Adv. Mater. 2008, 20, 2789–2794. [Google Scholar] [CrossRef] [PubMed]
- Skorb, E.V.; Fix, D.; Andreeva, D.V.; Möhwald, H.; Shchukin, D.G. Surface-Modified Mesoporous SiO 2 Containers for Corrosion Protection. Adv. Funct. Mater. 2009, 19, 2373–2379. [Google Scholar] [CrossRef]
- Andreeva, D.V.; Skorb, E.V.; Shchukin, D.G. Layer-by-Layer Polyelectrolyte/Inhibitor Nanostructures for Metal Corrosion Protection. ACS Appl. Mater. Interfaces 2010, 2, 1954–1962. [Google Scholar] [CrossRef]
- Zhao, S.; Caruso, F.; Dähne, L.; Decher, G.; De Geest, B.G.; Fan, J.; Feliu, N.; Gogotsi, Y.; Hammond, P.T.; Hersam, M.C.; et al. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. ACS Nano 2019, 13, 6151–6169. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, D.V.; Kollath, A.; Brezhneva, N.; Sviridov, D.V.; Cafferty, B.J.; Möhwald, H.; Skorb, E.V. Using a chitosan nanolayer as an efficient pH buffer to protect pH-sensitive supramolecular assemblies. Phys. Chem. Chem. Phys. 2017, 19, 23843–23848. [Google Scholar] [CrossRef] [Green Version]
- Abu-Thabit, N.Y. Near-Infrared pH Sensor Based on a SPEEK–Polyaniline Polyelectrolyte Complex Membrane. Proceedings 2018, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Chavasit, V.; Kienzle-Sterzer, C.; Antonio Torres, J. Formation and characterization of an insoluble polyelectrolyte complex: Chitosan-polyacrylic acid. Polym. Bull. 1988, 19, 223–230. [Google Scholar] [CrossRef]
- Van der Gucht, J.; Spruijt, E.; Lemmers, M.; Cohen Stuart, M.A. Polyelectrolyte complexes: Bulk phases and colloidal systems. J. Colloid Interface Sci. 2011, 361, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Richard, I.; Thibault, M.; De Crescenzo, G.; Buschmann, M.D.; Lavertu, M. Ionization Behavior of Chitosan and Chitosan–DNA Polyplexes Indicate That Chitosan Has a Similar Capability to Induce a Proton-Sponge Effect as PEI. Biomacromolecules 2013, 14, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Nifontova, G.; Zvaigzne, M.; Baryshnikova, M.; Korostylev, E.; Ramos-Gomes, F.; Alves, F.; Nabiev, I.; Sukhanova, A. Next-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization. Nanoscale Res. Lett. 2018, 13, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.L.; Musin, E.V.; Dubrovskii, A.V.; Tikhonenko, S.A. Determination of urea concentration using urease-containing polyelectrolyte microcapsules. Anal. Methods 2019, 11, 1585–1590. [Google Scholar] [CrossRef]
- Borodina, T.N.; Rumsh, L.D.; Kunizhev, S.M.; Sukhorukov, G.B.; Vorozhtsov, G.N.; Feldman, B.M.; Markvicheva, E.A. Polyelectrolyte Microcapsules as the Systems for delivery of biologically active substances. Suppl. Ser. B: Biomed. Chem. 2008, 2, 88–93. [Google Scholar] [CrossRef]
- Dubrovskii, A.V.; Kim, A.L.; Tikhonenko, S.A. Method of determining the localization of charges on the surface. J. Electrostat. 2019, 102, 103376. [Google Scholar] [CrossRef]
- Reshetilov, A.N.; Plekhanova, Y.V.; Dubrovskii, A.V.; Tikhonenko, S.A. Detection of urea using urease and paramagnetic Fe3O4 particles incorporated into polyelectrolyte microcapsules. Process. Biochem. 2016, 51, 277–281. [Google Scholar] [CrossRef]
- Antipina, M.N.; Kiryukhin, M.V.; Chong, K.; Low, H.Y.; Sukhorukov, G.B. Patterned microcontainers as novel functional elements for µTAS and LOC. Lab. Chip 2009, 9, 1472. [Google Scholar] [CrossRef]
- Kazakova, L.I.; Shabarchina, L.I.; Sukhorukov, G.B. Co-encapsulation of enzyme and sensitive dye as a tool for fabrication of microcapsule based sensor for urea measuring. Phys. Chem. Chem. Phys. 2011, 13, 11110–11117. [Google Scholar] [CrossRef]
- Kazakova, L.I.; Dubrovskiĭ, A.V.; Moshkov, D.A.; Shabarchina, L.I.; Sukhorukov, B.I. An electron microscopy study of the structure of polyelectrolyte microcapsules containing protein and containing no protein. Biofizika 2007, 52, 850–854. [Google Scholar] [PubMed]
- Curvale, R.A. Buffer capacity of bovine serum albumin (BSA). J. Argentine Chem. Soc. 2009, 97, 174–180. [Google Scholar]
- Kazakova, L.I.; Dubrovskyi, A.V.; Santalova, I.M.; Moshkov, D.A.; Apolonnik, N.V.; Shabarchina, L.I. The dependence of proteins’ distribution within polyelectrolyte microcapsules on pH of the medium. Russ. J. Bioorganic Chem. 2012, 38, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Oskuee, R.K.; Ramezanpour, M.; Gholami, L.; Malaekeh-Nikouei, B. Cholesterol improves the transfection efficiency of polyallylamine as a non-viral gene delivery vector. Braz. J. Pharm. Sci. 2017, 53. [Google Scholar] [CrossRef] [Green Version]
- Dubrovskii, A.V.; Kochetkova, O.Y.; Kim, A.L.; Musin, E.V.; Seraya, O.Y.; Tikhonenko, S.A. Destruction of shells and release of a protein from microcapsules consisting of non-biodegradable polyelectrolytes. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 160–164. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubrovskii, A.V.; Kim, A.L.; Musin, E.V.; Ramazanov, B.R.; Tikhonenko, S.A. The Discovery of the Buffer Capacity of Various Types of Polyelectrolyte Microcapsules. Polymers 2021, 13, 4026. https://doi.org/10.3390/polym13224026
Dubrovskii AV, Kim AL, Musin EV, Ramazanov BR, Tikhonenko SA. The Discovery of the Buffer Capacity of Various Types of Polyelectrolyte Microcapsules. Polymers. 2021; 13(22):4026. https://doi.org/10.3390/polym13224026
Chicago/Turabian StyleDubrovskii, Alexey V., Aleksandr L. Kim, Egor V. Musin, Bulat R. Ramazanov, and Sergey A. Tikhonenko. 2021. "The Discovery of the Buffer Capacity of Various Types of Polyelectrolyte Microcapsules" Polymers 13, no. 22: 4026. https://doi.org/10.3390/polym13224026
APA StyleDubrovskii, A. V., Kim, A. L., Musin, E. V., Ramazanov, B. R., & Tikhonenko, S. A. (2021). The Discovery of the Buffer Capacity of Various Types of Polyelectrolyte Microcapsules. Polymers, 13(22), 4026. https://doi.org/10.3390/polym13224026