Thermal Analysis of a Metal–Organic Framework ZnxCo1-X-ZIF-8 for Recent Applications
Abstract
:1. Introduction
2. Experimental Work
2.1. Synthesis of Bimetallic Zn/Co-ZIF-8
2.2. Computational Study
2.3. Characterization of Bimetallic Zn/Co-ZIF-8
3. Results and Discussion
3.1. Pyrolysis Process of the Prepared ZnxCo1-x-ZIF-8 Metal–Organic Framework
3.2. XRD of the Prepared ZnxCo1-x-ZIF-8 Metal–Organic Framework
3.3. DSC of the Prepared ZnxCo1-x-ZIF-8 Metal–Organic Framework
3.4. Photocatalytic Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Lan, Z.; Huang, X.; Liu, H.; Guo, J. Study on catalytic effect and mechanism of MOF (MOF = ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium. Int. J. Hydrogen Energy 2019, 44, 28863–28873. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; Xue, H.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318. [Google Scholar] [CrossRef]
- Wang, K.B.; Xun, Q.; Zhang, Q. Recent progress in metal-organic frameworks as active materials for supercapacitors. Energy Chem. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Ali Akbar Razavi, S.; Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 2019, 399, 213023. [Google Scholar] [CrossRef]
- Lin, R.B.; Xiang, S.; Xing, H.; Zhou, W.; Chen, B. Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87–103. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, A.S.; Zou, B.; Zhang, H.X.; Yan, K.L.; Lin, Y. Advances of metal–organic frameworks for gas sensing. Polyhedron 2018, 154, 83–97. [Google Scholar] [CrossRef]
- Mehtab, T.; Yasin, G.; Arif, M.; Shakeel, M.; Korai, R.M.; Nadeem, M.; Muhammad, M.; Lu, X. Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. J. Energy Storage 2019, 21, 632–646. [Google Scholar] [CrossRef]
- Xu, G.; Nie, P.; Dou, H.; Ding, B.; Li, L.; Zhang, X. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, Y.; Li, D.S.; Bu, X.; Feng, P. Metal–Organic Frameworks for Separation. Adv. Mater. 2018, 30, 1705189. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal–organic frameworks for drug delivery: A conventional platform with new promise. J. Mater. Chem. B 2018, 6, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Velásquez-Hernández MD, J.; Ricco, R.; Carraro, F.; Limpoco, F.T.; Linares-Moreau, M.; Leitner, E.; Wiltsche, H.; Rattenberger, J.; Schröttner, H.; Falcaro, P.; et al. Degradation of ZIF-8 in phosphate buffered saline media. Cryst. Eng. Comm. 2019, 21, 4538–4544. [Google Scholar] [CrossRef] [Green Version]
- Chirra, S.; Wang, L.F.; Aggarwal, H.; Tsai, M.F.; Soorian, S.S.; Siliveri, S.; Goskula, S.; Gujjula, S.R.; Narayanan, V. Rapid synthesis of a novel nano-crystalline mesoporous faujasite type metal-organic framework, ZIF-8 catalyst, its detailed characterization, and NaBH4 assisted, enhanced catalytic Rhodamine B degradation. Mater. Today Commun. 2021, 26, 101993. [Google Scholar] [CrossRef]
- Ahmad, N.; Nordin NA, H.M.; Jaafar, J.; Malek NA, N.N.; Ismail, A.F.; Ramli MK, N. Modification of zeolitic imidazolate framework-8 with amine groups for improved antibacterial activity. Mater. Today Proc. 2021, 46, 2024–2029. [Google Scholar] [CrossRef]
- Eum, K.; Jayachandrababu, K.C.; Rashidi, F.; Zhang, K.; Leisen, J.; Graham, S.; Lively, R.P.; Chance, R.R.; Sholl, D.S.; Nair, S.; et al. Highly Tunable Molecular Sieving and Adsorption Properties of Mixed-Linker Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2015, 137, 4191–4197. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, G.; Krungleviciute, V.; Guo, Z.X.; Yildirim, T. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 2014, 7, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Sergey Vyazovkin, A.K.; Burnham, J.M.; Criado, L.A. Pérez-Maqueda, Crisan Popescu, Nicolas Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Kang, Z.; Fan, L.; Sun, D. Recent advances and challenges of metal–organic framework membranes for gas separation. J. Mater. Chem. A 2017, 5, 10073–10091. [Google Scholar] [CrossRef]
- Zhu, C.; Peng, Y.; Yang, W. Modification strategies for metal-organic frameworks targeting at membrane-based gas separations. Green Chem. Eng. 2021, 2, 17–26. [Google Scholar] [CrossRef]
- Li, S.H.; Qi, M.Y.; Tang, Z.R.; Xu, Y.J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Ricco, R.; Maddigan, N.K.; Dickinson, R.P.; Xu, H.; Li, Q.; Sumby, C.J.; Bell, S.G.; Falcaro, P.; Doonan, C.J. Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites. Chem. Mater. 2018, 30, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- James, J.B.; Lin, Y.S. Thermal stability of ZIF-8 membranes for gas separations. J. Membr. Sci. 2017, 532, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Yang, B.; Wei, X.; Dai, H.; Chen, Z.; Cui, Z.; Zhang, G.; Xie, F.; Zhang, W.; Guo, R. Facile Synthesis and Optical Properties of CsPbX3/ZIF-8 Composites for Wide-Color-Gamut Display. Nanomaterials 2019, 9, 832. [Google Scholar] [CrossRef] [Green Version]
- Aboraia, A.M.; Darwish AA, A.; Polyakov, V.; Erofeeva, E.; Butova, V.; Zahran, H.Y.; El-Rehim, A.F.A.; Algarni, H.; Yahia, I.S.; Soldatov, A.V. Structural characterization and optical properties of zeolitic imidazolate frameworks (ZIF-8) for solid-state electronics applications. Opt. Mater. 2020, 100, 109648. [Google Scholar] [CrossRef]
- Van Cleuvenbergen, S.; Stassen, I.; Gobechiya, E.; Zhang, Y.; Markey, K.; De Vos, D.E.; Kirschhock, C.; Champagne, B.; Verbiest, T.; Van Der Veen, M.A. ZIF-8 as Nonlinear Optical Material: Influence of Structure and Synthesis. Chem. Mater. 2016, 28, 3203–3209. [Google Scholar] [CrossRef]
- Dou, L.; Wu, S.; Chen, D.L.; He, S.; Wang, F.F.; Zhu, W. Structures and Electronic Properties of Au Clusters Encapsulated ZIF-8 and ZIF-90. J. Phys. Chem. C 2018, 122, 8901–8909. [Google Scholar] [CrossRef]
- Tu, X.; Xie, Q.; Xiang, C.; Zhang, Y.; Yao, S. Scanning electrochemical microscopy in combination with piezoelectric quartz crystal impedance analysis for studying the growth and electrochemistry as well as microetching of poly (o-phenylenediamine) thin films. J. Phys. Chem. B 2005, 109, 4053–4063. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Results obtained with the correlation energy density functionals. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09; Gaussian, InC. Wallingford CT 2009, 32, 5648–5652. [Google Scholar]
- Thabet, H.K.; Al-Hossainy, A.F.; Imran, M. Synthesis, characterization, and DFT modeling of novel organic compound thin films derived from 2-amino-4-(2-hydroxy-3-methoxyphenyl)-4H-thiazolo [3, 2-a][1, 3, 5] triazin-6 (7H)-one. Opt. Mater. 2020, 105, 109915. [Google Scholar] [CrossRef]
- Young, R.A. Introduction to the Rietveld method. In The Rietveld Method; Young, R.A., Ed.; Oxford University Press: Oxford, UK, 1993; pp. 1–38. [Google Scholar]
- Minakshi, M.; Blackford, M.; Ionescu, M. Characterization of alkaline-earth oxide additions to the MnO2 cathode in an aqueous secondary battery. J. Alloys Compd. 2011, 509, 5974–5980. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Kim, H.; Choi, J.; Yip, A.C. Thermal stability of ZIF-8 under oxidative and inert environments: A practical perspective on using ZIF-8 as a catalyst support. Chem. Eng. J. 2014, 253, 502. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Bourezgui, A.; Al-Hossainy, A.F. Novel synthesis, DFT and investigation of the optical and electrical properties of carboxymethyl cellulose/thiobarbituric acid/copper oxide [CMC + TBA/CuO] C nanocomposite film. J. Polym. Res. 2020, 27, 264. [Google Scholar] [CrossRef]
- Al-Hossainy, A.F.; Abdelaal, R.M.; El Sayed, W.N. Novel synthesis, structure characterization, DFT and investigation of the optical properties of cyanine dye/zinc oxide [4-CHMQI/ZnO] C nanocomposite thin film. J. Mol. Struct. 2021, 1224, 128989. [Google Scholar] [CrossRef]
- Almutlaq, N.; Al-Hossainy, A. Novel synthesis, structure characterization, DFT and investigation of the optical properties of diphenylphosphine compound/zinc oxide [DPPB + ZnO] C nanocomposite thin film. Compos. Interfaces 2021, 28, 879–904. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Al-Dumiri, A.A.; Al-Hossainy, A.F. Combined experimental and DFT-TDDFT computational studies of doped [PoDA + PpT/ZrO2] C nanofiber composites and its applications. Vacuum 2020, 182, 109777. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Al-Hossainy, A.F. Synthesis, structural characterization, DFT, kinetics and mechanism of oxidation of bromothymol blue: Application to textile industrial wastewater treatment. Chem. Pap. 2021, 75, 297–309. [Google Scholar] [CrossRef]
- Bourezgui, A.; Al-Hossainy, A.F.; El Azab, I.H.; Alresheedi, F.; Mahmoud, S.A.; Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.S. Combined experimental and TDDFT computations for the structural and optical properties for poly (ortho phenylene diamine) thin film with different surfactants. J. Mater. Sci. Mater. Electron. 2021, 32, 5489–5503. [Google Scholar] [CrossRef]
- Sharma, P.; Sundaram, M.M.; Watcharatharapong, T.; Laird, D.; Euchner, H.; Ahuja, R. Zn metal atom doping on the surface plane of one-dimesional NiMoO4 nanorods with improved redox chemistry. ACS Appl. Mater. Interfaces 2020, 12, 44815–44829. [Google Scholar] [CrossRef] [PubMed]
- Al-Hossainy, A.F.; Sediq, A.Y.; Mahmoud, S.A. Combined Experimental and DFT-TDDFT Characterization Studies of Crystalline Mesoporous-Assembled [ZrO2] NPs and [DPPP + Gly/ZrO2] C Nanocomposite Thin Film. Electron. Mater. Lett. 2021, 17, 188–206. [Google Scholar] [CrossRef]
- Shaaban, E.R.; Hassaan, M.Y.; Mostafa, A.G.; Abdel-Ghany, A.M. Crystallization kinetics of new compound of V2O5-PbO-Li2O-Fe2O3 glass using differential thermal analysis. J. Alloys Compd. 2009, 482, 440–446. [Google Scholar] [CrossRef]
- Goel, A.; Tulyaganov, D.U.; Goel, I.K.; Shaaban, E.R.; Ferreira, J.M. Effect of BaO on the crystallization kinetics of glasses along the Diopside-Ca-Tschermak join. J. Non-Cryst. Solids 2009, 355, 193–202. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Zhang, Y.; Bai, M.; Zhang, Y.; Yue, Z.; Duan, E. Effects of apparent activation energy in pyrolytic carbonization on the synthesis of MOFs-carbon involving thermal analysis kinetics and decomposition mechanism. Chem. Eng. J. 2020, 395, 124980. [Google Scholar] [CrossRef]
- Kim, M.R.; Kim, T.; Rye, H.S.; Lee, W.; Kim, H.G.; Kim, M.I.; Seo, B.; Lim, C.S. Zeolitic imidazolate framework promoters in one-pot epoxy–amine reaction. J. Mater. Sci. 2020, 55, 2068–2076. [Google Scholar] [CrossRef]
- Bourezgui, S.A.; Kacem, I.; Daoudi, M.; Al-Hossainy, A.F. Influence of gamma-irradiation on structural, optical and photocatalytic performance of TiO2 nanoparticles under controlled atmospheres. J. Electron. Mater. 2020, 49, 1904–1921. [Google Scholar] [CrossRef]
Samples (640 °C) | a (Å) | b (Å) | c (Å) | Volume | Phase Ratio | R-Factor |
---|---|---|---|---|---|---|
Zn100Co0-ZIF-8 | 3.187088 | 3.187088 | 5.159326 | 52.40599 | 100% | 3.059 |
Zn75Co25-ZIF-8 | 3.188616 | 3.188616 | 5.155623 | 52.41863 | 100% | 3.24 |
Zn50Co50-ZIF-8 | 3.186009 | 3.186009 | 5.157346 | 52.35044 | 100% | 3.382 |
Zn25Co75-ZIF-8 | 7.943037 | 7.943037 | 8.024088 | 506.2545 | 47.64% | 3.487 |
3.192232 | 3.192232 | 5.159266 | 52.57471 | 52.36% | 3.563 | |
Zn0Co100-ZIF-8 | 8.08809 | 8.08809 | 8.007209 | 513.333 | 100% | 3.059 |
Composition | Peak | Act. E | Kinetic Par. |
---|---|---|---|
Zn100Co0-ZIF-8 | Peak 1 | 336.11 | 8.051 × 1027 |
Peak 2 | 491.67 | 1.466 × 1034 | |
Peak 3 | 624.38 | 5.622 × 1038 | |
Peak 4 | 795.98 | 1.009 × 1044 | |
Peak 5 | 891.62 | 4.853 × 1046 | |
Zn75Co25-ZIF-8 | Peak 1 | 343.59 | 1.742 × 1028 |
Peak 2 | 617.54 | 3.363 × 1038 | |
Peak 3 | 776.73 | 2.783 × 1043 | |
Zn50Co50-ZIF-8 | Peak 1 | 334.74 | 7.083 × 1027 |
Peak 2 | 600.6 | 9.291 × 1037 | |
Peak 3 | 652.12 | 4.412 × 1039 | |
Zn25Co75-ZIF-8 | Peak 1 | 322.31 | 1.96 × 1027 |
Peak 2 | 610.73 | 2.011 × 1038 | |
Zn0Co100-ZIF-8 | Peak 1 | 306.48 | 3.671 × 1026 |
Peak 2 | 567.43 | 7.081 × 1036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.; Al-Hadeethi, Y.M.; Alshahrie, A.; Kutbee, A.T.; Shaaban, E.R.; Al-Hossainy, A.F. Thermal Analysis of a Metal–Organic Framework ZnxCo1-X-ZIF-8 for Recent Applications. Polymers 2021, 13, 4051. https://doi.org/10.3390/polym13224051
Ahmed M, Al-Hadeethi YM, Alshahrie A, Kutbee AT, Shaaban ER, Al-Hossainy AF. Thermal Analysis of a Metal–Organic Framework ZnxCo1-X-ZIF-8 for Recent Applications. Polymers. 2021; 13(22):4051. https://doi.org/10.3390/polym13224051
Chicago/Turabian StyleAhmed, Moustafa, Yas M Al-Hadeethi, Ahmed Alshahrie, Arwa T Kutbee, Essam R. Shaaban, and Ahmed F. Al-Hossainy. 2021. "Thermal Analysis of a Metal–Organic Framework ZnxCo1-X-ZIF-8 for Recent Applications" Polymers 13, no. 22: 4051. https://doi.org/10.3390/polym13224051
APA StyleAhmed, M., Al-Hadeethi, Y. M., Alshahrie, A., Kutbee, A. T., Shaaban, E. R., & Al-Hossainy, A. F. (2021). Thermal Analysis of a Metal–Organic Framework ZnxCo1-X-ZIF-8 for Recent Applications. Polymers, 13(22), 4051. https://doi.org/10.3390/polym13224051