Effects of Heat-Treatment on Tensile Behavior and Dimension Stability of 3D Printed Carbon Fiber Reinforced Composites
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
- Type (A) for ABSCF: ABSCF 100/rectilinear; ABSCF 70/rectilinear; ABSCF 100/Archimedean chords; ABS 70/Archimedean chords,
- Type (A) for PLACF: PLACF 100/rectilinear; PLACF 70/rectilinear; PLACF 100/Archimedean chords; PLA 70/Archimedean chords,
- Type (B) for PLACF-ABSCF-PLACF: PLACF-ABSCF-PLACF 100/rectilinear; PLA-ABSCF-PLACF 70/rectilinear; PLACF-ABSCF-PLACF 100/Archimedean chords; PLACF-ABSCF-PLACF 70/Archimedean chords,
- Type (B) for ABSCF-PLACF-ABSCF: ABSCF-PLACF-ABSCF 100/rectilinear; ABSCF-PLACF-ABSCF 70/rectilinear; ABCFS-PLACF-ABSCF 100/Archimedean chords; ABSCF-PLACF-ABSCF 70/Archimedean chords,
- Type (B) for PLACF-ABSCF-PLACF: PLACF-ABSCF-PLACF 100/rectilinear; PLACF-ABSCF-PLACF 70/rectilinear; PLACF-ABSCF-PLACF 100/Archimedean chords; PLACF-ABSCF-PLACF 70/Archimedean chords.
2.2. Printing Process
2.3. Heat Treatment
2.4. Characterization
3. Results and Discussion
3.1. Stability of the Dimension
3.2. Mechanical Properties
3.2.1. Tensile Strength
3.2.2. Porosity Measurement
3.3. SEM Analysis
4. General Comments
- 1.
- At low temperature (50 °C), only the outer surfaces of the samples were affected by heat treatment; thus, the melting material appeared there (Figure 13a),
- 2.
- At high temperatures (120 and 150 °C), the polymer reaches its melting point temperature; thus, the melting material appeared all over the sample (Figure 13b).
5. Conclusions
- Among the different combinations of input parameters considered for the study, the combination between two types of filaments shows excellent tensile properties in the case of using PLACF as upper and lower layers, and using one layer of ABSCF in the middle,
- Decreasing density of infill up to 70% leads to increasing increase in the porosity content,
- The best heat-treatment condition for PLACF is 120 °C and for ABSCF is 150 °C. Under those temperatures, the PLACF and ABSCF filament show maximum tensile strength and low porosity content,
- The maximum tensile strength for heat treatment (at 150 °C) samples was 257.4 MPa at sample PLACF/rectilinear pattern and 100% density,
- There is limited improvement in the tensile strength and modulus of elasticity values for the samples treated at low heat-treatment temperature compared with samples treated at high temperatures,
- At all structure specifications, the rectilinear pattern gives higher strength of up to 33%. This is due to the linear shape of the rectilinear pattern being better than the concentric circular shape of the Archimedean chords pattern,
- Untreated and Archimedean chords pattern exhibited higher porosity % compared with untreated rectilinear pattern. However, in the case of the heat-treated samples, more interfacial contact and fusion occurs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Snyder, J.; Andrews, M.; Weislogel, M.; Moeck, P.; Stone-Sundberg, J.; Birkes, D.; Hoffert, M.P.; Lindeman, A.; Morrill, J.; Fercak, O.; et al. 3D Systems’ Technology Overview and New Applications in Manufacturing, Engineering, Science, and Education. 3D Print. Addit. Manuf. 2014, 1, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.D.; Yap, Y.L.; Tan, H.K.J.; Sing, S.L.; Goh, G.L.; Yeong, W.Y. Process–structure–properties in polymer additive manufacturing via material extrusion. Crit. Rev. Solid State Mater. Sci. 2019, 45, 113–133. [Google Scholar] [CrossRef]
- Shanmugam, V.; Das, O.; Babu, K.; Marimuthu, U.; Veerasimman, A.; Johnson, D.J.; Neisiany, R.E.; Hedenqvist, M.S.; Ramakrishna, S.; Berto, F. Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int. J. Fatigue 2021, 143, 106007. [Google Scholar] [CrossRef]
- Gardan, J. Additive manufacturing technologies: State of the art and trends. Int. J. Prod. Res. 2016, 54, 3118–3132. [Google Scholar] [CrossRef]
- Wendel, B.; Rietzel, D.; Kühnlein, F.; Feulner, R.; Hülder, G. Additive Processing of Polymers. Macromol. Mater. Eng. 2008, 293, 799–809. [Google Scholar] [CrossRef]
- Vaezi, M.; Chianrabutra, S.; Mellor, B.; Yang, S. Multiple material additive manufacturing—Part 1: A review. Virtual Phys. Prototyp. 2013, 8, 19–50. [Google Scholar] [CrossRef]
- Khoo, Z.X.; Teoh, J.E.M.; Liu, Y.; Chua, C.K.; Yang, S.; An, J.; Leong, K.F.; Yeong, W.Y. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys. Prototyp. 2015, 10, 103–122. [Google Scholar] [CrossRef]
- Neisiany, R.E.; Khorasani, S.N.; Naeimirad, M.; Lee, J.K.Y.; Ramakrishna, S. Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers. Macromol. Mater. Eng. 2017, 302, 1600551. [Google Scholar] [CrossRef]
- Shanmugam, V.; Rajendran, D.J.J.; Babu, K.; Rajendran, S.; Veerasimman, A.; Marimuthu, U.; Singh, S.; Das, O.; Neisiany, R.E.; Hedenqvist, M.S.; et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polym. Test. 2021, 93, 106925. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Mathur, K.; Seyam, A.F.M. A critical review on 3D printed continuous fibre-reinforced composites: History, mechanism, materials and Properties. Compos. Struct. 2020, 232, 111476. [Google Scholar] [CrossRef]
- Alvarez, A.G.; Evans, P.L.; Dovgalski, L.; Goldsmith, I. Design, additive manufacture and clinical application of a patient-specific titanium implant to anatomically reconstruct a large chest wall defect. Rapid Prototyp. J. 2021, 27, 304–310. [Google Scholar] [CrossRef]
- Rahim, T.N.A.T.; Abdullah, A.M.; Md Akil, H. Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polym. Rev. 2019, 59, 589–624. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Dumitrescu, D.; Loghin, C.; Chen, Y.; Wang, L.; Nierstrasz, V. 3D Printing of NinjaFlex Filament onto PEDOT:PSS-Coated Textile Fabrics for Electroluminescence Applications. J. Electron. Mater. 2018, 47, 2082–2092. [Google Scholar] [CrossRef] [Green Version]
- Nasirov, A.; Fidan, I. Prediction of mechanical properties of fused filament fabricated structures via a symptotic homogenization. Mech. Mater. 2020, 145, 103372. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.; Rolfe, B.; Gibson, I. Additive manufacturing a powerful tool for the aerospace industry. Rapid Prototyp. J. 2021. [Google Scholar] [CrossRef]
- Wendt, C.; Valerga, A.P.; Droste, O.; Batista, M.; Marcos, M. FEM based evaluation of Fused Layer Modelling monolayers intensile testing. Procedia Manuf. 2017, 13, 916–923. [Google Scholar] [CrossRef]
- Ahn, S.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 2017, 12, 47–59. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Cuan-Urquizo, E.; Espinoza-Camacho, J.I.; Álvarez-Trejo, A.; Uribe, E.; Treviño-Quintanilla, C.D.; Crespo-Sánchez, S.E.; Gómez-Espinosa, A.; Roman-Flores, A.; Olvera-Silva, O. Elastic response of lattice arc structures fabricated using curved-layered fused deposition modeling. Mech. Adv. Mater. Struct. 2021, 28, 1498–1508. [Google Scholar] [CrossRef]
- Ashby, M.F.; Evans, T.; Fleck, N.A.; Hutchinson, J.W.; Wadley, H.N.G.; Gibson, L.J. Metal Foams: A Design Guide, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 113–149. [Google Scholar]
- Daniel, I.M.; Abot, J.L. Fabrication, testing and analysis of composite sandwich beams. Compos. Sci. Technol. 2000, 60, 2455–2463. [Google Scholar] [CrossRef]
- Herranen, H.; Pabut, O.; Eerme, M.; Majak, J.; Pohlak, M.; Kers, J.; Saarna, M.; Allikas, G.; Aruniit, A. Design and testing of sandwich structures with different core materials. Mater. Sci. 2012, 18, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Lanzotti, A.; Grasso, M.; Staiano, G.; Martorelli, M. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp. J. 2015, 21, 604–617. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, V.E.; Tavitov, A.G.; Urzhumtsev, O.D.; Mikhalin, M.V.; Solonin, A.N. Design and Fabrication of Strong Parts from Poly (Lactic Acid) with a Desktop 3D Printer: A Case with Interrupted Shell. Polymers 2019, 11, 760. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhao, L.; Fuh, J.Y.H.; Lee, H.P. Effect of porosity on mechanical properties of 3D printed polymers: Experiments and micromechanical modeling based on X-ray computed tomography analysis. Polymers 2019, 11, 1154. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Vicente, M.; Calle, W.; Ferrandiz, S.; Conejero, A. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print. Addit. Manuf. 2016, 3, 183–192. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, R.; Farina, I.; Colangelo, F.; Feo, L.; Fraternali, F. Multi-Material Additive Manufacturing of Sustainable Innovative Materials and Structures. Polymers 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, R.; Farina, I. On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications. PSU Res. Rev. 2018, 2, 115–137. [Google Scholar] [CrossRef]
- Najim, A.; Saad, A.S. An Investigation of New Design of Light Weight Structure of (ABS/PLA) by Using of Three Dimensions Printing. In Proceedings of the 13th International Conference “Standardization, Protypes and Quality: A Means of Balkan Countries’ Collaboration”, Brașov, Romania, 3–4 November 2016; pp. 482–487. [Google Scholar]
- Brischetto, S.; Ferro, C.G.; Torre, R.; Maggiore, P. 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved Layer. Struct. 2018, 5, 80–94. [Google Scholar] [CrossRef]
- Santosh, R.V.N.; Sarojini, J.; Vikram, K.A.; Lakshmi, V.V.K. Evaluating the Mechanical Commonly Used 3D Printed Polymers with Properties of ABS Multi Layered and PLA Polymers. Int. J. Eng. Adv. Technol. 2019, 8, 2351–2356. [Google Scholar]
- Pradeep, K.M.; Senthil, P.; Mohan, N. The influence of process parameters on the impact resistance of 3D printed PLA specimens under water-absorption and heat-treated conditions. Rapid Prototyp. J. 2021, 27, 1327–1336. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, N.-N.; Lu, Z.-L.; Jing, X.-Y.; Hu, C.-J. Diagnostic performance of magnetic beads-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for esophageal squamous cell carcinoma: A meta-analysis. Front. Lab. Med. 2018, 2, 55–62. [Google Scholar] [CrossRef]
- Basgul, C.; Yu, T.; MacDonald, D.W.; Siskey, R.; Marcolongo, M.; Kurtz, S.M. Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages? J. Mech. Behav. Biomed. Mater. 2020, 102, 103455. [Google Scholar] [CrossRef] [PubMed]
- Akhoundi, B.; Nabipour, M.; Hajami, F.; Shakoori, D. An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High-Temperature Polylactic Acid in Fused Deposition Modeling. Polym. Eng. Sci. 2020, 60, 979–987. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.; Weng, Z.; Senthil, T.; Wu, L. A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Mater. Des. J. 2016, 105, 152–159. [Google Scholar] [CrossRef]
- Von Windheim, N.; Collinson, D.W.; Lau, T.; Brinson, L.C.; Gall, K. The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA). Rapid Prototyp. J. 2021, 27, 1327–1336. [Google Scholar] [CrossRef]
- Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Llumà, J.; Gomez-Gras, G.; Casadesus, O. Comparative study of the flexural properties of ABS, PLA and a PLA–wood composite manufactured through fused filament fabrication. Rapid Prototyp. J. 2021, 27, 81–92. [Google Scholar] [CrossRef]
- Afonso, J.A.; Alves, J.L.; Caldas, G.; Gouveia, B.P.; Santana, L.; Belinha, J. Influence of 3D printing process parameters on the mechanical properties and mass of PLA parts and predictive models. Rapid Prototyp. J. 2021, 27, 487–495. [Google Scholar] [CrossRef]
- Bhandari, S.; Lopez-Anido, R.A.; Gardner, D.J. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit. Manuf. 2019, 30, 100922. [Google Scholar] [CrossRef]
- Calignano, F.; Lorusso, M.; Roppolo, I.; Minetola, P. Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing. Machines 2020, 8, 52. [Google Scholar] [CrossRef]
- Maqsood, N.; Rimašauskas, M. Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Compos. Part C Open Access 2021, 4, 100112. Available online: https://www.sciencedirect.com/science/article/pii/S2666682021000074 (accessed on 4 November 2021). [CrossRef]
- Pandelidi, C.; Maconachie, T.; Bateman, S.; Kelbassa, I.; Piegert, S.; Leary, M.; Brandt, M. Parametric study on tensile and flexural properties of ULTEM 1010 specimens fabricated via FDM. Rapid Prototyp. J. 2020, 27, 429–451. [Google Scholar] [CrossRef]
- Anderson, E.H. The Effect of Porosity on Mechanical Properties of Fused Deposition Manufactured Polymers and Composites. Ph.D. Thesis, San José State University, San Jose, CA, USA, 2019. [Google Scholar]
- Keleş, Ö.; Anderson, E.H.; Huynh, J.; Gelb, J.; Freund, J.; Karakoç, A. A Stochastic fracture of additively manufactured porous composites. Sci. Rep. 2018, 8, 15437. [Google Scholar] [CrossRef] [Green Version]
- Al-Maharma, A.Y.; Patil, S.P.; Markert, B. Effects of porosity on the mechanical properties of additively manufactured components: A critical review. Mater. Res. Express 2020, 7, 122001. [Google Scholar] [CrossRef]
- Mulle, M.; Wafai, H.; Yudhanto, A.; Lubineau, G.; Yaldiz, R.; Schijve, W.; Verghese, N. Influence of process-induced shrinkage and annealing on the thermomechanical behavior of glass fiber-reinforced polypropylene. Compos. Sci. Technol. 2019, 170, 183–189. [Google Scholar] [CrossRef]
- Hart, K.R.; Dunn, R.M.; Wetzel, E.D. Increased fracture toughness of additively manufactured semi-crystalline thermoplastics via thermal annealing. Polymer 2020, 211, 123091. [Google Scholar] [CrossRef]
- Hart, K.R.; Dunn, R.M.; Sietins, J.M.; Mock, C.M.H.; Mackay, M.E.; Wetzel, E.D. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer 2018, 144, 192–204. [Google Scholar] [CrossRef]
- Lv, T.; Zhou, C.; Li, J.; Huang, S.; Wen, H.; Meng, Y.; Jiang, S. New insight into the mechanism of enhanced crystallization of PLA in PLLA/PDLA mixture. J. Appl. Polym. Sci. 2018, 135, 45663. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, C.; Coppola, B.; Barra, G.; Di Maio, L.; Incarnato, L.; Lafdi, K. Effect of Porosity and Crystallinity on 3D Printed PLA Properties. Polymers 2019, 11, 1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Hofstätter, T.; Pedersen, D.B.; Tosello, G.; Hansen, H.N. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies. J. Reinf. Plast. Compos. 2017, 36, 1061–1073. [Google Scholar] [CrossRef] [Green Version]
- Mohammadizadeh, M.; Fidan, I. Tensile Performance of 3D-Printed Continuous Fiber-Reinforced Nylon Composites. J. Manuf. Mater. Process. 2021, 5, 68. [Google Scholar] [CrossRef]
Filament Type | Density g/cc | Tensile Strength (MPa) | Tensile Modulus (MPa) | Tensile Elongation (%) | Flexural Strength (MPa) | Extrusion Temp | Glass Transition Temperature |
---|---|---|---|---|---|---|---|
PLACF | 1.29 | 48 | 4950 | 2 | 89 | 215 °C | 60 °C |
ABSCF | 1.11 | 46 | 5210 | 2 | 76 | 230 °C | 105 °C |
Infill Pattern | Density % | Feed Rate (E/mm min−1) | Printing Speed (E/mm min−1) | Bed Temp. °C |
---|---|---|---|---|
Rectilinear | 100/70 | 80 | 100 | PLACF: 23 °C |
Archimedean chords | 100/70 | 80 | 100 | ABSCF: 110 °C |
Material | Infill Pattern | Density | Code |
---|---|---|---|
ABSCF-PLACF-ABSCF | Rectilinear | 100 | SA11 |
ABSCF-PLACF-ABSCF | Rectilinear | 70 | SA17 |
ABSCF-PLACF-ABSCF | Archimedean chords | 100 | SA21 |
ABSCF-PLACF-ABSCF | Archimedean chords | 70 | SA27 |
PLACF-ABSCF-PLACF | Rectilinear | 100 | SP11 |
PLACF-ABSCF-PLACF | Rectilinear | 70 | SP17 |
PLACF-ABSCF-PLACF | Archimedean chords | 100 | SP21 |
PLACF-ABSCF-PLACF | Archimedean chords | 70 | SP27 |
ABSCF | Rectilinear | 100 | PA11 |
ABSCF | Rectilinear | 70 | PA17 |
ABSCF | Archimedean chords | 100 | PA21 |
ABSCF | Archimedean chords | 70 | PA27 |
PLACF | Rectilinear | 100 | PP11 |
PLACF | Rectilinear | 70 | PP17 |
PLACF | Archimedean chords | 100 | PP21 |
PLACF | Archimedean chords | 70 | PP27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassar, A.; Younis, M.; Elzareef, M.; Nassar, E. Effects of Heat-Treatment on Tensile Behavior and Dimension Stability of 3D Printed Carbon Fiber Reinforced Composites. Polymers 2021, 13, 4305. https://doi.org/10.3390/polym13244305
Nassar A, Younis M, Elzareef M, Nassar E. Effects of Heat-Treatment on Tensile Behavior and Dimension Stability of 3D Printed Carbon Fiber Reinforced Composites. Polymers. 2021; 13(24):4305. https://doi.org/10.3390/polym13244305
Chicago/Turabian StyleNassar, Amal, Mona Younis, Mohamed Elzareef, and Eman Nassar. 2021. "Effects of Heat-Treatment on Tensile Behavior and Dimension Stability of 3D Printed Carbon Fiber Reinforced Composites" Polymers 13, no. 24: 4305. https://doi.org/10.3390/polym13244305
APA StyleNassar, A., Younis, M., Elzareef, M., & Nassar, E. (2021). Effects of Heat-Treatment on Tensile Behavior and Dimension Stability of 3D Printed Carbon Fiber Reinforced Composites. Polymers, 13(24), 4305. https://doi.org/10.3390/polym13244305