Manifest/Non-Manifest Drug Release Patterns from Polysaccharide Based Hydrogels—Case Study on Cyclodextrin—κ Carrageenan Crosslinked Hydrogels
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Instrumentation
2.3. Methods
2.3.1. Preparation of βCD-CG Films
2.3.2. Evaluation of Swelling Characteristic
2.3.3. Evaluation of Metronidazole Loading and Release
3. Results and Discussion
3.1. Structural Characterization
3.1.1. FTIR Characterization
3.1.2. Morphological Characterization by SEM
3.2. Evaluation of Hydrogels Behavior in Aqueous Media
3.3. Evaluation of Metronidazole Loading and Release Kinetics
4. Patterns in Drug Release Phenomena
- -
- is a multifractal function;
- -
- is the multifractal spatial coordinate;
- -
- is the non-multifractal time coordinate, also playing therole of an affine parameter of the trajectories, meaning that the analysis of release dynamics is done from the perspective of a projective geometry;
- -
- is the scale resolution;
- -
- is the complex velocity of system structural unit;
- -
- is the differentiable velocity of system structural unit—independent on ,
- -
- is the non-differentiable velocity of system structural unit—dependent on ,
- -
- is a constant tensor, corresponding to the non-differentiable—differentiable scale transition (i.e., transitions from the microscopic to the macroscopic scale in the release dynamics);
- -
- and are constant vectors corresponding to the backward and forward non-differentiable—differentiable drug release dynamics, through which the release dynamics can be explained by transitions from the microscopic to the macroscopic scale;
- -
- (i)
- monofractal release patterns, which implies release in a homogeneous system, characterized through a single fractal dimension and having the same scaling properties in any time interval;
- (ii)
- multifractal release patterns, which include release in an inhomogeneous and anisotropic system, characterized simultaneously by a wide variety of fractal dimensions.
4.1. Release Dynamics as Turbulent or Laminar Flows of a Multifractal Type Fluid
4.2. Non-Manifest Release Patterns
4.3. One Example of Manifest Release Pattern
4.4. Results and Discussion on the Theoretical Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barba, C.; Eguinoa, A.; Maté, J.I. Preparation and Characterization of β -Cyclodextrin Inclusion Complexes as a Tool of a Controlled Antimicrobial Release in Whey Protein Edible Films. LWT Food Sci. Technol. 2015, 64, 1362–1369. [Google Scholar] [CrossRef]
- Visakh, P.M. Composites and Nanocomposites. In Poly(Ethylene Terephthalate) Based Blends; William Andrew: Norwich, NY, USA, 2015. [Google Scholar]
- Ganguly, S.; Das, T.K.; Mondal, S.; Das, N.C. Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. RCS Adv. 2016, 107, 105350–105362. [Google Scholar] [CrossRef]
- Alinavaz, S.; Mahdavinia, G.R.; Jafari, H.; Hazrati, M.; Akbari, A. Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: Ciprofloxacin delivery, release kinetics and antibacterial activity. J. Mol. Struct. 2021, 1225, 129095. [Google Scholar] [CrossRef]
- Singh, S.K.; Srinivasan, K.; Singare, D.S.; Gowthamarajan, K.; Prakash, D. Formulation of ternary complexes of glyburide with hydroxypropyl-β-cyclodextrin and other solubilizing agents and their effect on release behavior of glyburide in aqueous and buffered media at different agitation speeds. Drug Dev. Ind. Pharm. 2012, 38, 1328–1336. [Google Scholar] [CrossRef]
- Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Akiba, U.; Anzai, J.-I. Cyclodextrin-containing layer-by-layer films and microcapsules: Synthesis and applications. AIMS Mater. Sci. 2017, 4, 832–846. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L. Carrageenan: A review. Vet. Med. 2013, 58, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, V.D.; Maheriya, P.; Jani, G.K.; Solanki, H.K. RETRACTED: Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr. Polym. 2014, 105, 97–112. [Google Scholar] [CrossRef]
- Thành, T.T.T.; Yuguchi, Y.; Mimura, M.; Yasunaga, H.; Takano, R.; Urakawa, H.; Kajiwara, K. Molecular Characteristics and Gelling Properties of the Carrageenan Family, 1. Preparation of Novel Carrageenans and their Dilute Solution Properties. Macromol. Chem. Phys. 2002, 203, 15–23. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.-K. Biological Activities of Carrageenanîn Marine Carbohydrates: Fundamentals and Applications; Pangestuti, R., Ed.; Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2014; Volume 72, Part A; pp. 113–124. [Google Scholar]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B., Jr.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analy-sise a review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Das, P.; Maity, P.P.; Ganguly, S.; Ghosh, S.; Baral, J.; Bose, M.; Choudhary, S.; Gangopadhyay, S.; Dhara, S.; Das, A.K.; et al. Biocompatible carbon dots derived from κ-carrageenan and phenyl boronic acid for dual modality sensing platform of sugar and its anti-diabetic drug release behavior. Int. J. Biol. Macromol. 2019, 132, 316–329. [Google Scholar] [CrossRef]
- Jeong, D.; Joo, S.; Hu, Y.; Shinde, V.V.; Cho, E.; Jung, S. Carboxymethyl cellulose-based super-absorbent hydrogels containing carboxymehtyl β-cyclodextrin for enhanced mechanical strength and effective drug delivery. Eur. Polym. J. 2018, 105, 17–25. [Google Scholar] [CrossRef]
- Nottale, L. Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics; Imperial College Press: London, UK, 2011. [Google Scholar]
- Merches, I.; Agop, M. Differentiability and Fractality in Dynamics of Physical Systems; World Scientific: River Edge, NJ, USA, 2015. [Google Scholar]
- Agop, M.; Păun, V.P. On the Perspectives of the Fractal Theory. Fundaments and Applications; Romanian Academy House: Bucharest, Romania, 2017. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Co.: San Francisco, CA, USA, 1982. [Google Scholar]
- Jackson, E.A. Perspective of Nonlinear Dynamics; Cambridge University Press: Cambridge, UK, 1991; Volume 2. [Google Scholar]
- Cristescu, C.P. Nonlinear Dynamics and Chaos. Theoretical Fundaments and Applications; Romanian Academy Publishing House: Bucharest, Romania, 2008. [Google Scholar]
- Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 1966, 150, 1079–1085. [Google Scholar] [CrossRef]
- Mazilu, N.; Skyrmions, A.M. A Great Finishing Touch to Classical Newtonian Philosophy; Nova Science Publishers: New York, NY, USA, 2013. [Google Scholar]
- Merches, I.; Agop, M.; Mazilu, N. Scale Transitions as Foundations of Physics; World Scientific: Singapore, 2020. [Google Scholar]
- Mazilu, N.; Porumbreanu, M. The Coming to Being of Wave Mechanics; Limes Publishing House: Cluj-Napoca, Romania, 2018. [Google Scholar]
- Hamermesh, M.; Mullin, A.A. Group Theory and its Applications to Physical Problems. Am. J. Phys. 1962, 30, 774–775. [Google Scholar] [CrossRef]
- Jaynes, E.T. Foundations of Probability; Theory, Statistical Inference, and Statistical Theories of Science; Harper, W.L., Hooker, C.A., Eds.; D. Reidel Pub. Co.: Dordrecht, The Netherlands, 1976. [Google Scholar]
- Bujoreanu, C.; Nedeff, F.; Benchea, M.; Agop, M. Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Appl. Acoust. 2017, 119, 88–93. [Google Scholar] [CrossRef]
- Nedeff, V.; Moşneguţu, E.; Panainte, M.; Ristea, M.; Lazăr, G.; Scurtu, D.; Ciobanu, B.; Timofte, A.; Toma, Ş.; Agop, M. Dynamics in the boundary layer of a flat particle. Powder Technol. 2012, 221, 312–317. [Google Scholar] [CrossRef]
- Munceleanu, G.V.; Paun, V.-P.; Botez, I.C.; Agop, M. The microscopic-macroscopic scale transformation through a chaos scenario in the fractal space-time theory. Int. J. Bifurc. Chaos 2011, 21, 603–618. [Google Scholar] [CrossRef]
- Agop, M.; Ioannou, P.; Nica, P.-E.; Radu, C.; Alexandru, A.; Vizureanu, P. Fractal Characteristics of the Solidification Process. Mater. Trans. 2004, 45, 972–975. [Google Scholar] [CrossRef] [Green Version]
- Agop, M.; Griga, V.; Ciobanu, B.; Ciubotariu, C.; Buzea, C.G.; Stan, C.; Buzea, C. Gravity and Cantorian space-time. Chaos Solitons Fractals 1998, 9, 1143–1181. [Google Scholar] [CrossRef]
- Ciubotariu, C.; Agop, M. Absence of a gravitational analog to the Meissner effect. Gen. Relativ. Gravit. 1996, 28, 405–412. [Google Scholar] [CrossRef]
- Agop, M.; Paun, V.; Harabagiu, A. El Naschie’s epsilon((infinity)) theory and effects of nanoparticle clustering on the heat transport in nanofluids. Chaos Solitons Fractals 2008, 37, 1269–1278. [Google Scholar] [CrossRef]
- Agop, M.; Murgulet, C. El Naschie’s epsilon((infinity)) theory and scale relativity theory in the topological dimension D=4. Chaos Solitons Fractals 2007, 32, 1231–1240. [Google Scholar] [CrossRef]
- Colotin, M.; Pompilian, G.; Nica, P.; Gurlui, S.; Paun, V.; Agop, M. Fractal Transport Phenomena through the Scale Relativity Model. Acta Phys. Pol. Ser. A Gen. Phys. 2009, 116, 157–164. [Google Scholar] [CrossRef]
- Gurlui, S.; Agop, M.; Strat, M.; Strat, G.; Bacaita, S. Experimental and Theoretical Investigations of Anode Double Layer. Jpn. J. Appl. Phys. 2005, 44, 3253–3259. [Google Scholar] [CrossRef]
- Durdureanu-Angheluta, S.; Bacaita, V.; Radu, M.; Agop, L.; Ignat, C.M.; Uritu, S.M.; Pinteala, M. Mathematical modelling of the release profile of anthraquinone-derived drugs encapsulated on magnetite nanoparticles. Rev. Roum. Chim. 2013, 58, 217–221. [Google Scholar]
- Agop, M.; Alexandroaie, D.; Cerepaniuc, A.; Bacaita, S. El Naschie’s epsilon((infinity)) space-time and patterns in plasma discharge. Chaos Solitons Fractals 2006, 30, 470–489. [Google Scholar] [CrossRef]
- Misner, C.W. Harmonic maps as models for physical theories. Phys. Rev. D 1978, 18, 4510–4524. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Gurlui, S.; Agop, M. Particle distribution in transient plasmas generated by ns-laser ablation on ternary metallic alloys. Appl. Phys. BLasers Opt. 2019, 125, 190. [Google Scholar] [CrossRef]
- Schrittwieser, R.W.; Ionita, C.; Teodorescu-Soare, C.T.; Vasilovici, O.; Gurlui, S.; Irimiciuc, S.A.; Dimitriu, D.G. Spectral and electrical diagnosis of complex space-charge structures excited by a spherical grid cathode with orifice. Phys. Scr. 2017, 92, 44001. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Hodoroaba, B.C.; Bulai, G.; Gurlui, S.; Craciun, V. Multiple structure formation and molecule dynamics in transient plasmas generated by laser ablation of graphite. Spectrochim. Acta Part BAt. Spectrosc. 2020, 165, 105774. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Lancok, J.; Craciun, V. Langmuir Probe Technique for Plasma Char-acterization during Pulsed Laser Deposition Process. Coatings 2021, 11, 7. [Google Scholar] [CrossRef]
- Agop, M.; Mihaila, I.; Nedeff, F.; Irimiciuc, S.A. Charged Particle Oscillations in Transient Plas-mas Generated by Nanosecond Laser Ablation on Mg Target. Symmetry 2020, 12, 292. [Google Scholar] [CrossRef] [Green Version]
- Cimpoesu, N.; Gurlui, S.; Bulai, G.; Cimpoesu, R.; Paun, V.-P.; Irimiciuc, S.A.; Agop, M. Cimpoesu In-Situ Plasma Monitoring during the Pulsed Laser Deposition of Ni60Ti40 Thin Films. Symmetry 2020, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Irimiciuc, S.A.; Chertopalov, S.; Craciun, V.; Novotný, M.; Lancok, J. Investigation of laser-produced plasma multistructuring by floating probe measurements and optical emission spectroscopy. Plasma Process. Polym. 2020, 17, 11. [Google Scholar] [CrossRef]
- Iftime, M.M.; Dobreci, D.L.; Irimiciuc, S.A.; Agop, M.; Petrescu, T.; Doroftei, B. A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations. Drug Deliv. 2020, 27, 1125–1133. [Google Scholar] [CrossRef]
- Magop, D.; Bacaita, S.; Peptu, C.; Popa, M.; Agop, M. Non-differentiability at Mesoscopic Scale in Drug Release Processes from Polymer Microparticles. Mater. Plast. 2012, 49, 101–105. [Google Scholar]
Sample Code | Concentration (%) | Molar Raport | βCD (g) | κCG (g) | NaOH (mL) | ECH (mL) | Yields (%) |
---|---|---|---|---|---|---|---|
F1 | 10 | 1:1 | 0.5 | 0.5 | 10 | 1.5 | 86.1 |
F2 | 15 | 1:2 | 0.5 | 1 | 10 | 1.5 | 68.1 |
F3 | 15 | 2:1 | 1 | 0.5 | 10 | 1.5 | 77.9 |
F4 | 6.6 | 1:1 | 0.5 | 0.5 | 15 | 1.5 | 25.9 |
F5 | 5 | 1:1 | 0.5 | 0.5 | 20 | 1.5 | 25.2 |
F6 | 10 | 1:1 | 0.5 | 0.5 | 10 | 0.75 | 71.0 |
F7 | 10 | 1:1 | 0.5 | 0.5 | 10 | 3 | 38.6 |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | |
---|---|---|---|---|---|---|---|
Swelling degree (%) | 238 | 418 | 409 | 442 | 957 | 327 | 292 |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | |
---|---|---|---|---|---|---|---|
Loaded MT (mg) | 12.6 | 16.2 | 13.3 | 16.1 | 17.9 | 16.2 | 10.5 |
Loaded Efficiency (%) | 57.87 | 46.02 | 55.76 | 46.32 | 40.23 | 46.08 | 65.15 |
Released MT (mg/mL) | 10.24 | 15.41 | 12.05 | 12.44 | 17.65 | 13.35 | 9.03 |
Released Efficiency MT (%) | 80.99 | 95.13 | 90.80 | 77.25 | 98.42 | 82.53 | 86.39 |
BCD-CG F1 | 4.13 × 10−3 | 7.55 | 4.051 × 10−6 |
BCD-CG F2 | 6.23 × 10−3 | 5.67 | 5.199 × 10−6 |
BCD-CG F3 | 5.48 × 10−3 | 5.22 | 3.421 × 10−6 |
BCD-CG F4 | 3.18 × 10−3 | 2.07 | 0.181 × 10−6 |
BCD-CG F5 | 5.77 × 10−3 | 9.14 | 11.58 × 10−6 |
BCD-CG F6 | 5.07 × 10−3 | 4.91 | 2.582 × 10−6 |
BCD-CG F7 | 5.44 × 10−3 | 5.42 | 3.622 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băcăiță, E.S.; Peptu, C.A.; Savin, C.-L.; Luțcanu, M.; Agop, M. Manifest/Non-Manifest Drug Release Patterns from Polysaccharide Based Hydrogels—Case Study on Cyclodextrin—κ Carrageenan Crosslinked Hydrogels. Polymers 2021, 13, 4147. https://doi.org/10.3390/polym13234147
Băcăiță ES, Peptu CA, Savin C-L, Luțcanu M, Agop M. Manifest/Non-Manifest Drug Release Patterns from Polysaccharide Based Hydrogels—Case Study on Cyclodextrin—κ Carrageenan Crosslinked Hydrogels. Polymers. 2021; 13(23):4147. https://doi.org/10.3390/polym13234147
Chicago/Turabian StyleBăcăiță, Elena Simona, Cătălina Anișoara Peptu, Corina-Lenuta Savin (Logigan), Marian Luțcanu, and Maricel Agop. 2021. "Manifest/Non-Manifest Drug Release Patterns from Polysaccharide Based Hydrogels—Case Study on Cyclodextrin—κ Carrageenan Crosslinked Hydrogels" Polymers 13, no. 23: 4147. https://doi.org/10.3390/polym13234147
APA StyleBăcăiță, E. S., Peptu, C. A., Savin, C. -L., Luțcanu, M., & Agop, M. (2021). Manifest/Non-Manifest Drug Release Patterns from Polysaccharide Based Hydrogels—Case Study on Cyclodextrin—κ Carrageenan Crosslinked Hydrogels. Polymers, 13(23), 4147. https://doi.org/10.3390/polym13234147