Development and Characterization of Silver Containing Free Standing Polymer FILMS for Dosimetry Applications
Abstract
:1. Introduction
2. Materials, Instruments, and Methods
2.1. Materials
2.1.1. Formation of Ag-Enriched PVA Hydrogels
2.1.2. Formation of Ag Enriched Free Standing PVA Films
2.1.3. Irradiation and Analytical Techniques
2.2. Radiolysis and Polymerization Mechanisms in the Irradiated Samples
3. Results and Discussion
3.1. Characterization of the Irradiated PVA Hydrogels
3.2. Characterisation of the AgPVA Free Standing Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kortov, V. Materials for thermoluminescent dosimetry: Current status and future trends. Radiat. Meas. 2007, 42, 576–581. [Google Scholar] [CrossRef]
- Kron, T. Thermoluminescence dosimetry and its applications in medicine-Part 1: Physics, materials and equipment. Australas. Phys. Eng. Sci. Med. 1994, 17, 175–199. [Google Scholar] [PubMed]
- Kry, S.F.; Alvarez, P.; Cygler, J.E.; DeWerd, L.A.; Howell, R.M.; Meeks, S.; O'Daniel, J.; Reft, C.; Sawakuchi, G.; Yukihara, E.G.; et al. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Phys. 2020, 47, e19–e51. [Google Scholar] [CrossRef] [Green Version]
- Lye, J.; Dunn, L.; Kenny, J.; Lehmann, J.; Kron, T.; Oliver, C.; Butler, D.; Alves, A.; Johnston, P.; Franich, R.; et al. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters. Med. Phys. 2014, 41, 032102. [Google Scholar] [CrossRef] [PubMed]
- Poirier, Y.; Kuznetsova, S.; Villarreal-Barajas, J.E. Characterization of nanodot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40–300 kVp energy range. Med. Phys. 2018, 45, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Damulira, E.; Yusoff, M.N.S.; Omar, A.F.; Mohd Taib, N.H. A Review: Photonic Devices Used for Dosimetry in Medical Radiation. Sensors 2010, 19, 2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, K.; Yamaguchi, I.; Natsuhori, M. Low-Dose Radiation Effects on Animals and Ecosystems. Preliminary Study on Electron Spin Resonance Dosimetry Using Affected Cattle Teeth Due to the Fukushima Daiichi Nuclear Power Plant Accident; Fukumoto, M., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, A.; Baffa, O.; Mascarenhas, S. Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim. PLoS ONE 2018, 13, e0192444. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.S.; Sun, C.; Pratx, G. Radioluminescence in biomedicine: Physics, applications, and models. Phys. Med. Biol. 2019, 64, 04TR01. [Google Scholar] [CrossRef] [PubMed]
- Duragkar, A.; Muley, A.; Pawar, N.R.; Chopra, V.; Dhoble, N.S.; Chimankar, O.P.; Dhoble, S.J. Versatility of thermoluminescence materials and radiation dosimetry—A review. Luminescence 2019, 34, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Funaro, M.; Bartolomeo, A.D.; Pelosi, A.; Sublimi Saponetti, M.; Proto, A. Dosimeter based on silver-nanoparticle precursors for medical applications with linear response over a wide dynamic range. Micro Nano Lett. 2011, 6, 759–762. [Google Scholar] [CrossRef]
- Guidelli, E.J.; Ramos, A.P.; Baffa, O. Optically Stimulated Luminescence under Plasmon Resonance Conditions Enhances X-ray Detection. Plasmonics 2014, 9, 1049–1056. [Google Scholar] [CrossRef]
- West, P.R.; Ishii, S.; Naik, G.; Emani, N.; Shalaev, V.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, M.; Attar, F.; Saboury, A.A.; Akhtari, K.; Hooshmand, N.; Hasan, A.; El-Sayed, M.A.; Falahati, M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J. Control 2010, 311–312, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Belloni, J.; Marignier, J.-L.; Mostafavi, M. Mechanisms of metal nanoparticles nucleation and growth studied by radiolysis. Radiat. Phys. Chem. 2020, 169, 107952. [Google Scholar] [CrossRef]
- Bharti, A.; Bhardwaj, R.; Agrawal, A.K.; Goyal, N.; Gautam, S. Monochromatic X-Ray Induced Novel Synthesis of Plasmonic Nanostructure for Photovoltaic Application. Sci. Rep. 2016, 6, 22394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čubová, K.; Čuba, V. Synthesis of inorganic nanoparticles by ionizing radiation—A review. Radiat. Phys. Chem. 2020, 169, 108774. [Google Scholar] [CrossRef]
- Carrasco-Flores, E.A.; LaVerne, J.A. Surface species produced in the radiolysis of zirconia nanoparticles. J. Chem. Phys. 2007, 127, 234703. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-T.; Wang, Y.; Shi, L.; Zhu, Q.; Pang, W.; Xu, G.; Lu, F. Fabrication of silver/cross-linked poly(vinyl alcohol) cable-like nanostructures under γ-ray irradiation. Nanotechnology 2005, 16, 3017–3022. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, X.; Gao, H. One-step synthesis of silver-poly(4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerisation. The photoluminescence characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 45–49. [Google Scholar] [CrossRef]
- Oh, S.D.; Lee, S.; Choi, S.H.; Lee, I.S.; Lee, Y.M.; Chun, J.H.; Park, H.J. Synthesis of Ag and Ag–SiO2 nanoparticles by γ-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar Typhimurium and Botrytis cinerea. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 228–233. [Google Scholar] [CrossRef]
- Krutyakov, Y.A.; Olenin, A.Y.; Kudrinskii, A.A.; Dzurik, P.S.; Lisichkin, G.V. Aggregative stability and polydispersity of silver nanoparticles prepared using two-phase aqueous organic systems. Nanotechnol. Russ. 2008, 3, 303–310. [Google Scholar] [CrossRef]
- Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bull. 2004, 37, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Wang, D.; Zhang, J.; Li, Y. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 2006, 1, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Grand, J.; Ferreira, S.R.; Waele, V.; Mintova, S.; Nenoff, T.M. Nanoparticle Alloy Formation by Radiolysis. J. Phys. Chem. C 2018, 122, 12573–12588. [Google Scholar] [CrossRef]
- Belloni, J. Nucleation, growth and properties of nanocluster studied by radiation chemistry application to catalysis. Catal. Today 2006, 113, 141–156. [Google Scholar] [CrossRef]
- Abedini, A.; Bakar AA, A.; Larki, F.; Menon, P.S.; Islam, M.S.; Shaari, S. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route. Nanoscale Res. Lett. 2016, 11, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedini, A.; Susthitha Menon, P.; Daud, A.R.; Hamid, M.A.A.; Shaari, S. Radiolytic formation of highly luminescent triangular Ag nanocolloids. J. Radioanal. Nucl. Chem. 2016, 307, 985–991. [Google Scholar] [CrossRef]
- Croonenborghs, B.; Smith, M.A.; Strain, P. X-ray versus gamma irradiation effects on polymers. Radiat. Phys. Chem. 2007, 76, 1676–1678. [Google Scholar] [CrossRef]
- Gerasimov, Y. Radiation methods in nanotechnology. J. Eng. Phys. Thermophys. 2011, 84, 947–963. [Google Scholar] [CrossRef]
- Qiao, Z.P.; Xie, Y.; Xu, J.G.; Zhu, Y.J.; Quian, Y.T. γ-radiation synthesis of the nanocrystalline semiconductors PbS and CuS. J. Colloid Interf. Sci. 1999, 214, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Jayaramudu, T.; Raghavendra, G.M.; Varaprasad, K.; Sadiku, R.; Raju, K.M. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: For inactivation of bacteria. Carbohyd. Polym. 2013, 92, 2193–2200. [Google Scholar] [CrossRef] [PubMed]
- Krklješ, A.N.; Nedeljković, J.M.; Kačarević-Popović, Z.M. Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym. Bull. 2007, 58, 271–279. [Google Scholar] [CrossRef]
- Krklješ, A.N.; Marinović-Cincović, M.T.; Kačarević-Popović, Z.M.; Nedeljković, J.M. Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur. Polym. J. 2007, 43, 2171–2176. [Google Scholar] [CrossRef]
- Krklješ, A.N.; Marinović-Cincović, M.T.; Kačarević-Popović, Z.M.; Nedeljković, J.M. Dynamic thermogravimetric degradation of gamma radiolytical lysyn- the sized Ag-PVA nanocomposites. Thermochim. Acta 2007, 460, 28–34. [Google Scholar] [CrossRef]
- Krstić, J.; Spasojević, J.; Radosavljević, A.; Perić-Grujić, A.; Đurić, M.; Kačarević- Popović, Z.; Popović, S. In vitro silver ion release kinetics from nanosilver/poly(vinylalcohol) hydrogels synthesized by gamma irradiation. J. Appl. Polym. Sci. 2014, 131, 40321. [Google Scholar] [CrossRef]
- Wang, B.; Mukataka, S.; Kokufuta, E.; Kodama, M. The influence of polymer concentration on the radiation-chemical yield of intermolecular crosslinking of poly(vinyl alcohol) by γ-rays in deoxygenated aqueous solution. Radiat. Phys. Chem. 2000, 59, 91–95. [Google Scholar] [CrossRef]
- Billany, M.R.; Khatib, K.; Gordon, M.; Sugden, J.K. Alcohols and ethanol amines as hydroxyl radical scavengers. Int. J. Pharm. 1996, 137, 143–147. [Google Scholar] [CrossRef]
- Chou, H.L.; Wu, C.M.; Lin, F.D.; Rick, J. Interactions between silver nanoparticles and polyvinyl alcohol nanofibers. AIP Adv. 2014, 4, 087111. [Google Scholar] [CrossRef] [Green Version]
- Formation of Reactive Free Radicals in an Aqueous Environment. In Free-Radical-Induced DNA Damage and Its Repair; Springer: Berlin/Heidelberg, Germany, 2006. [CrossRef]
- Ulanski, P.; Bothe, E.; Rosiak, J.M.; Sonntag, C. OH-radical-induced crosslinking and strand break age of poly(vinylalcohol) in aqueous solution in the absence and presence of oxygen. A pulse radiolysis and products study. Macromol. Chem.Phys. 1994, 195, 1443–1461. [Google Scholar] [CrossRef]
- Sonntag, C.; Bothe, E.; Ulanski, P.; Deeble, D.J. Pulse radiolysis in model studies toward radiation processing. Radiat. Phys. Chem. 1995, 46, 527–532. [Google Scholar] [CrossRef]
- Wang, B.; Kodama, M.; Mukataka, S.; Kokufuta, E. On the intermolecular crosslinking of PVA chains in an aqueous solution by g-ray irradiation. Polym. Gels Netw. 1998, 6, 71–81. [Google Scholar] [CrossRef]
- Bdewi., S.F.; Abdullah, O.G.; Aziz, B.K.; Mutar, A.A.R. Synthesis, Structural and Optical Characterization of MgO Nanocrystalline Embedded in PVA Matrix. J. Inorg. Organomet. Polym. Mater. 2016, 26, 326–334. [Google Scholar] [CrossRef]
- Puišo, J.; Laurikaitienė, J.; Adlienė, D.; Prosyčevas, I. Liquid radiation detectors based on nanosilver surface plasmon resonance phenomena. Radiat. Prot. Dosim. 2010, 139, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Puišo, J.; Adlienė, D.; Guobienė, A.; Prosyčevas, I.; Plaipaitė-Nalivaiko, R. Modification of Ag-PVP nanocomposites by gamma irradiation. Mater. Sci. Eng. B. 2011, 176, 1562–1567. [Google Scholar] [CrossRef]
- Mahapatra, S.K.; Bogle, K.A.; Dhole, S.D.; Bhoraskar, V.N. Synthesis of gold and silver nanoparticles by electron irradiation at 5–15 keV energy. Nanotechnology 2007, 18, 135602. [Google Scholar] [CrossRef]
- Abargues, R.; Marqués-Hueso, J.; Canet-Ferrer, J.; Pedrueza, E.; Valdés, J.L.; Jiménez, E.; Martínez-Pastor, J.P. High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics. Nanotechnology 2008, 19, 355308. [Google Scholar] [CrossRef]
- Badr, Y.A.; Abd El-Kader, K.M.; Rasha, A.; Khafagy, M. Raman Spectroscopic Study of CdS, PVA Composite Films. J. Appl. Polym. Sci. 2004, 92, 1984–1992. [Google Scholar] [CrossRef]
- Romero Salazar, J.D. Study of Structural, Thermic, μ-Raman and Optic Transformation of PVA/TiO2 Polymeric Membranes. Sci. Tech. Año XXIII 2018, 23, 543–552. [Google Scholar]
- Tan, G.; Sağlam, S.; Emül, E.; Erdönmez, D.; Sağlam, N. Synthesis and characterization of silver nanoparticles integrated in polyvinyl alcohol nanofibers for bionanotechnological applications. Turk. J. Biol. 2016, 40, 643–651. [Google Scholar] [CrossRef]
- Michota, A.; Kudelski, A.; Bukowska, J. Molecular structure of cysteamine monolayers on silver and gold substrates: Comparative studies by surface-enhanced Raman scattering. Surf. Sci. 2002, 502–503, 214–218. [Google Scholar] [CrossRef]
- Gryniewicz-Ruzicka, C.M.; Arzhantsev, S.; Pelster, L.N.; Westenberger, B.J.; Buhse, L.F.; Kauffman, J.F. Multivariate Calibration and Instrument Standardization for the Rapid Detection of Diethylene Glycol in Glycerin by Raman Spectroscopy. Appl. Spectrosc. 2011, 65, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Saksen, B.D. The complete Raman spectrum of glycerine. Proc. Indian Acad. Sci.—Sect. A 1939, 10, 333–340. [Google Scholar] [CrossRef]
- Shi, Y.; Xiong, D.; Li, J.; Wang, K.; Wang, N. In situ repair of graphene defects and enhancement of its reinforcement effect in polyvinyl alcohol hydrogels. RSC Adv. 2017, 7, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
Materials | Chemical Composition of Samples, wt.% | |||||
---|---|---|---|---|---|---|
PVA | PVA + Gly | AgPVA1 | AgPVA2 | AgGlyPVA1 | AgGlyPVA2 | |
AgNO3 | 0 | 0 | 0.09 | 0.17 | 0.09 | 0.17 |
(C2H4O)n | 20.00 | 19.51 | 19.90 | 19.80 | 19.51 | 19.41 |
C3H8O3 | 0 | 2.46 | 0 | 0 | 1.95 | 1.94 |
H2O | 80.00 | 78.03 | 80.01 | 80.03 | 78.45 | 78.48 |
Material | Chemical Composition of as Prepared Gels Used for Formation of Gel Films, wt.% | |||||
---|---|---|---|---|---|---|
PVA | AgPVAF1 | AgPVAF2 | AgGlyPVAF1 | AgIsoPVAF1 | AgEtaPVAF1 | |
AgNO3 | 0.21 | 1.01 | 0.21 | 0.21 | 0.21 | |
(C2H4O)n | 20.0 | 19.76 | 18.92 | 19.33 | 19.41 | 19.35 |
C3H8O3 | 2.92 | |||||
CH3CH2OH | 2.10 | |||||
(CH3)2CHOH | 2.53 | |||||
H2O | 80.0 | 80.03 | 80.07 | 77.54 | 77.85 | 78.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merkis, M.; Puišo, J.; Adliene, D.; Laurikaitiene, J. Development and Characterization of Silver Containing Free Standing Polymer FILMS for Dosimetry Applications. Polymers 2021, 13, 3925. https://doi.org/10.3390/polym13223925
Merkis M, Puišo J, Adliene D, Laurikaitiene J. Development and Characterization of Silver Containing Free Standing Polymer FILMS for Dosimetry Applications. Polymers. 2021; 13(22):3925. https://doi.org/10.3390/polym13223925
Chicago/Turabian StyleMerkis, Mantvydas, Judita Puišo, Diana Adliene, and Jurgita Laurikaitiene. 2021. "Development and Characterization of Silver Containing Free Standing Polymer FILMS for Dosimetry Applications" Polymers 13, no. 22: 3925. https://doi.org/10.3390/polym13223925
APA StyleMerkis, M., Puišo, J., Adliene, D., & Laurikaitiene, J. (2021). Development and Characterization of Silver Containing Free Standing Polymer FILMS for Dosimetry Applications. Polymers, 13(22), 3925. https://doi.org/10.3390/polym13223925