A Mini-Review on Recent Developments in Anti-Icing Methods
Abstract
:1. Introduction
2. Anti-Icing Hydrophobic Compounds
3. Electrothermal Composite Materials for De-Icing Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhou, P.; Wang, W.; Zhu, L.; Wang, H.; Ai, Y. Study on Performance Damage and Mechanism Analysis of Asphalt under Action of Chloride Salt Erosion. Materials 2021, 14, 3089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, H.; Hoff, I. The Mutual Effect and Reaction Mechanism of Bitumen and De-Icing Salt Solution. Constr. Build. Mater. 2021, 302, 124–213. [Google Scholar] [CrossRef]
- Xiong, R.; Chu, C.; Qiao, N.; Wang, L.; Yang, F.; Sheng, Y.; Guan, B.; Niu, D.; Geng, J.; Chen, H. Performance Evaluation of Asphalt Mixture Exposed to Dynamic Water and Chlorine Salt Erosion. Constr. Build. Materials 2019, 201, 121–126. [Google Scholar] [CrossRef]
- Zou, Y.; Amirkhanian, S.; Xu, S.; Li, Y.; Wang, Y.; Zhang, J. Effect of Different Aqueous Solutions on Physicochemical Properties of Asphalt Binder. Constr. Build. Mater. 2021, 286, 122–810. [Google Scholar] [CrossRef]
- Zubairov, B.; Lentschke, J.; Schröder, H. Dendroclimatology in Kazakhstan. Dendrochronologia 2019, 56, 125–602. [Google Scholar] [CrossRef]
- Wu, D.; Jin, L.; Leng, Y.; Hu, M.; Bi, R.; Tang, L.; Gao, Z.; Yang, G. A Full-Scale Field Experiment to Study the Hydrothermal Behavior of the Multilayer Asphalt Concrete Pavement in Cold Regions. Constr. Build. Mater. 2021, 267, 121–855. [Google Scholar] [CrossRef]
- Sajid, H.U.; Kiran, R.; Qi, X.; Bajwa, D.S.; Battocchi, D. Employing Corn Derived Products to Reduce the Corrosivity of Pavement Deicing Materials. Constr. Build. Mater. 2020, 263, 120–662. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, Y.; Xie, W.; Wu, J. Evaluation of Road Performance and Adhesive Characteristic of Asphalt Binder in Salt Erosion Environment. Mater. Today Commun. 2020, 25, 101–593. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wu, Q.; Xu, H.; Liu, P.; Oeser, M. Damage Evolution of Asphalt Mixture under Freeze-Thaw Cyclic Loading from a Mechanical Perspective. Int. J. Fatigue 2021, 142, 105–923. [Google Scholar] [CrossRef]
- Fakhri, M.; Ali Siyadati, S.; Aliha, M.R.M. Impact of Freeze–Thaw Cycles on Low Temperature Mixed Mode I/II Cracking Properties of Water Saturated Hot Mix Asphalt: An Experimental Study. Constr. Build. Mater. 2020, 261, 119–939. [Google Scholar] [CrossRef]
- Lövqvist, L.; Balieu, R.; Kringos, N. A Thermodynamics-Based Model for Freeze-Thaw Damage in Asphalt Mixtures. Int. J. Solids Struct. 2020, 203, 264–275. [Google Scholar] [CrossRef]
- Cong, L.; Ren, M.; Shi, J.; Yang, F.; Guo, G. Experimental Investigation on Performance Deterioration of Asphalt Mixture under Freeze–Thaw Cycles. Int. J. Transp. Sci. Technol. 2020, 9, 218–228. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, H.; Xiao, J.; Tan, Y. Effects of Freeze-Thaw Cycles on Fatigue Performance of Asphalt Mixture and Development of Fatigue-Freeze-Thaw (FFT) Uniform Equation. Constr. Build. Mater. 2020, 242, 118043. [Google Scholar] [CrossRef]
- Meng, A.; Xu, H.; Feng, X.; Tan, Y. Feasibility of Freeze-Thaw Damage Analysis for Asphalt Mixtures through Dynamic Nondestructive Testing. Constr. Build. Mater. 2020, 233, 117–220. [Google Scholar] [CrossRef]
- Zhang, K.; Li, W.; Han, F. Performance Deterioration Mechanism and Improvement Techniques of Asphalt Mixture in Salty and Humid Environment. Constr. Build. Mater. 2019, 208, 749–757. [Google Scholar] [CrossRef]
- Wu, S.; Yang, J.; Yang, R.; Zhu, J.; Liu, S.; Wang, C. Investigation of Microscopic Air Void Structure of Anti-Freezing Asphalt Pavement with X-Ray CT and MIP. Constr. Build. Mater. 2018, 178, 473–483. [Google Scholar] [CrossRef]
- Feng, D.; Yi, J.; Wang, D.; Chen, L. Impact of Salt and Freeze–Thaw Cycles on Performance of Asphalt Mixtures in Coastal Frozen Region of China. Cold Reg. Sci. Technol. 2010, 62, 34–41. [Google Scholar] [CrossRef]
- Gilani, V.N.M.; Hosseinian, S.M.; Nikookar, M. Presentation of a New Deicer with the Least Moisture and Fatigue Failures in Asphalt Mixtures. Arab. J. Sci. Eng. 2021, 46, 10457–10471. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, W.; Yu, Z. Analysis of Interface Fusion Effect between Old and New Asphalt under Plant Mixing and Cold Recycling Mode Based on Molecular Dynamics Simulation. Materials 2021, 14, 4637. [Google Scholar] [CrossRef]
- Ullah Sajid, H.; Naik, D.L.; Kiran, R. Improving the Ice-Melting Capacity of Traditional Deicers. Constr. Build. Mater. 2021, 271, 121–527. [Google Scholar] [CrossRef]
- Buss, N.; Nelson, K.N.; Hua, J.; Relyea, R.A. Effects of Different Roadway Deicing Salts on Host-Parasite Interactions: The Importance of Salt Type. Environ. Pollut. 2020, 266, 115–244. [Google Scholar] [CrossRef]
- Wyman, D.A.; Koretsky, C.M. Effects of Road Salt Deicers on an Urban Groundwater-Fed Kettle Lake. Appl. Geochem. 2018, 89, 265–272. [Google Scholar] [CrossRef]
- Buss, N.; Wersebe, M.; Hua, J. Direct and Indirect Effects of a Common Cyanobacterial Toxin on Amphibian-Trematode Dynamics. Chemosphere 2019, 220, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Hintz, W.D.; Relyea, R.A. Impacts of Road Deicing Salts on the Early-Life Growth and Development of a Stream Salmonid: Salt Type Matters. Environ. Pollut. 2017, 223, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Milotic, D.; Milotic, M.; Koprivnikar, J. Effects of Road Salt on Larval Amphibian Susceptibility to Parasitism through Behavior and Immunocompetence. Aquat. Toxicol. 2017, 189, 42–49. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Wang, J.; Hao, X.; Thomas, B.W. Modeling the Effect of Salt-Affected Soil on Water Balance Fluxes and Nitrous Oxide Emission Using Modified DNDC. J. Environ. Manag. 2021, 280, 111–678. [Google Scholar] [CrossRef]
- Shen, J.; Treu, R.; Wang, J.; Hao, X.; Thomas, B.W. Modeling Growing Season and Annual Cumulative Nitrous Oxide Emissions and Emission Factors from Organically Fertilized Soils Planted with Barley in Lethbridge, Alberta, Canada. Agric. Syst. 2019, 176, 102–654. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Abadía, J.; Marjani, M. Melatonin Foliar Sprays Elicit Salinity Stress Tolerance and Enhance Fruit Yield and Quality in Strawberry (Fragaria × Ananassa Duch.). Plant Physiol. Biochem. 2020, 149, 313–323. [Google Scholar] [CrossRef]
- Zhang, L.; Song, L.; Wang, B.; Shao, H.; Zhang, L.; Qin, X. Co-Effects of Salinity and Moisture on CO2 and N2O Emissions of Laboratory-Incubated Salt-Affected Soils from Different Vegetation Types. Geoderma 2018, 332, 109–120. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Abdelrahman, M.; Hosseini, M.S.; Hoveizeh, N.F.; Tran, L.-S.P. Alleviation of the Effect of Salinity on Growth and Yield of Strawberry by Foliar Spray of Selenium-Nanoparticles. Environ. Pollut. 2019, 253, 246–258. [Google Scholar] [CrossRef]
- Miller, J.R.; LaLama, M.J.; Kusnic, R.L.; Wilson, D.E.; Kiraly, P.M.; Dickson, S.W.; Zeller, M. On the Nature of Calcium Magnesium Acetate Road Deicer. J. Solid State Chem. 2019, 270, 1–10. [Google Scholar] [CrossRef]
- Ma, H.; Yu, H.; Tan, Y.; Da, B. Ice Pressure and Icing Volume Expansion Rate of Acetate-Based Deicers under Freezing Conditions. Constr. Build. Mater. 2021, 305, 124–751. [Google Scholar] [CrossRef]
- Oh, S.-J.; Choi, G.-G.; Kim, J.-S. Production of Acetic Acid-Rich Bio-Oils from the Fast Pyrolysis of Biomass and Synthesis of Calcium Magnesium Acetate Deicer. J. Anal. Appl. Pyrolysis 2017, 124, 122–129. [Google Scholar] [CrossRef]
- Flores-Vivian, I.; Hejazi, V.; Kozhukhova, M.I.; Nosonovsky, M.; Sobolev, K. Self-Assembling Particle-Siloxane Coatings for Superhydrophobic Concrete. ACS Appl. Mater. Interfaces 2013, 5, 13284–13294. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, L.; Ou, J. Hydrophobic/Superhydrophobic Concrete. In Smart and Multifunctional Concrete Toward Sustainable Infrastructures; Springer: Singapore, 2017; pp. 339–357. ISBN 978-981-10-4348-2. [Google Scholar]
- Yilbas, B.S.; Ali, H.; Yousaf, M.R.; Al-Sharafi, A. 2.25 Hydrophobic Materials. In Comprehensive Energy Systems; Elsevier: Ontario, Canada, 2018; pp. 796–831. ISBN 978-0-12-814925-6. [Google Scholar]
- Li, J.; Ueda, E.; Paulssen, D.; Levkin, P.A. Slippery Lubricant-Infused Surfaces: Properties and Emerging Applications. Adv. Funct. Mater. 2019, 29, 1802317. [Google Scholar] [CrossRef] [Green Version]
- Lein, H.L. Coatings and surfaces with hydrophobic and anti-icing properties. In Frontiers of Nanoscience; Elsevier: Amsterdam, The Netherlands, 2019; Volume 14, pp. 257–269. ISBN 978-0-08-102572-7. [Google Scholar]
- Latthe, S.S.; Sutar, R.S.; Bhosale, A.K.; Nagappan, S.; Ha, C.-S.; Sadasivuni, K.K.; Liu, S.; Xing, R. Recent Developments in Air-Trapped Superhydrophobic and Liquid-Infused Slippery Surfaces for Anti-Icing Application. Prog. Org. Coat. 2019, 137, 105–373. [Google Scholar] [CrossRef]
- Mao, Z.; Qi, Y.; Yang, Z.; Jiang, G.; Zhang, J. Fabrication of Solar-Reflective, Hydrophobic Polymer Materials with Excellent Cooling and Anti-Icing Properties through Selective Etching. Appl. Surf. Sci. 2020, 518, 146–209. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, Y.; Liu, X.; Xi, S.; Yan, Z.; Liu, Z.; Shi, T.; Liao, G. Employing Micro Pyramidal Holes and Porous Nanostructures for Enhancing the Durability of Lubricant-Infused Surfaces in Anti-Icing. Surf. Coat. Technol. 2021, 405, 126–568. [Google Scholar] [CrossRef]
- Binh, N.T.; Hanh, V.T.H.; Ngoc, N.T.; Duc, N.B. Anti-Icing Efficiency on Bio-Inspired Slippery Elastomer Surface. Mater. Chem. Phys. 2021, 265, 124–502. [Google Scholar] [CrossRef]
- Xue, C.-H.; Li, H.-G.; Guo, X.-J.; Ding, Y.-R.; Liu, B.-Y.; An, Q.-F.; Zhou, Y. Superhydrophobic Anti-Icing Coatings with Self-Deicing Property Using Melanin Nanoparticles from Cuttlefish Juice. Chem. Eng. J. 2021, 424, 130–553. [Google Scholar] [CrossRef]
- Qin, C.; Mulroney, A.T.; Gupta, M.C. Anti-Icing Epoxy Resin Surface Modified by Spray Coating of PTFE Teflon Particles for Wind Turbine Blades. Mater. Today Commun. 2020, 22, 100–770. [Google Scholar] [CrossRef]
- Vazirinasab, E.; Maghsoudi, K.; Jafari, R.; Momen, G. A Comparative Study of the Icephobic and Self-Cleaning Properties of Teflon Materials Having Different Surface Morphologies. J. Mater. Process. Technol. 2020, 276, 116–415. [Google Scholar] [CrossRef]
- Yeong, Y.H.; Gupta, M.C. Hot Embossed Micro-Textured Thin Superhydrophobic Teflon FEP Sheets for Low Ice Adhesion. Surf. Coat. Technol. 2017, 313, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Nazhipkyzy, M.; Mansurov, Z. Influence of Superhydrophobic Properties on Deicing. J. Eng. Phys. Thermodyn. 2016, 89, 1498–1503. [Google Scholar] [CrossRef]
- Han, S.; Yao, T.; Yang, X. Preparation and Anti-Icing Properties of a Hydrophobic Emulsified Asphalt Coating. Constr. Build. Mater. 2019, 220, 214–227. [Google Scholar] [CrossRef]
- Gao, Y.; Qu, L.; He, B.; Dai, K.; Fang, Z.; Zhu, R. Study on Effectiveness of Anti-Icing and Deicing Performance of Super-Hydrophobic Asphalt Concrete. Constr. Build. Mater. 2018, 191, 270–280. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Zang, S.; Yang, C.; Liu, Y.; Jing, F.; Jing, H.; Hu, J.; Wang, C.; Zhou, Y. Engineering Controllable Water Transport of Biosafety Cuttlefish Juice Solar Absorber toward Remarkably Enhanced Solar-Driven Gas-Liquid Interfacial Evaporation. Nano Energy 2020, 73, 104–834. [Google Scholar] [CrossRef]
- Jiang, Q.; Luo, Z.; Men, Y.; Yang, P.; Peng, H.; Guo, R.; Tian, Y.; Pang, Z.; Yang, W. Red Blood Cell Membrane-Camouflaged Melanin Nanoparticles for Enhanced Photothermal Therapy. Biomaterials 2017, 143, 29–45. [Google Scholar] [CrossRef]
- Zheng, W.; Teng, L.; Lai, Y.; Zhu, T.; Li, S.; Wu, X.; Cai, W.; Chen, Z.; Huang, J. Magnetic Responsive and Flexible Composite Superhydrophobic Photothermal Film for Passive Anti-Icing/Active Deicing. Chem. Eng. J. 2022, 427, 130–922. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, N.; Xu, L.; Cai, Y. Review of Recent Findings on Occurrence and Fates of Siloxanes in Environmental Compartments. Ecotoxicol. Environ. Saf. 2021, 224, 112631. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Q.; Lei, J.; Mao, M.; Qin, Y.; Xi, C.; Lu, Z.; Yang, X.; Rong, H. Preparation of biological antifreeze protein-modified emulsified asphalt coating and research on its anti-icing performance. Constr. Build. Mater. 2021, 294, 123–473. [Google Scholar] [CrossRef]
- Gallego, E.; Perales, J.F.; Roca, F.J.; Guardino, X.; Gadea, E. Volatile Methyl Siloxanes (VMS) Concentrations in Outdoor Air of Several Catalan Urban Areas. Atmos. Environ. 2017, 155, 108–118. [Google Scholar] [CrossRef]
- Horii, Y.; Minomo, K.; Ohtsuka, N.; Motegi, M.; Nojiri, K.; Kannan, K. Distribution Characteristics of Volatile Methylsiloxanes in Tokyo Bay Watershed in Japan: Analysis of Surface Waters by Purge and Trap Method. Sci. Total Environ. 2017, 586, 56–65. [Google Scholar] [CrossRef]
- Lee, D.; Park, M.-K.; Lee, I.-S.; Choi, S.-D. Contamination Characteristics of Siloxanes in Coastal Sediment Collected from Industrialized Bays in South Korea. Ecotoxicol. Environ. Saf. 2019, 182, 109–457. [Google Scholar] [CrossRef]
- Xu, S.; Warner, N.; Bohlin-Nizzetto, P.; Durham, J.; McNett, D. Long-Range Transport Potential and Atmospheric Persistence of Cyclic Volatile Methylsiloxanes Based on Global Measurements. Chemosphere 2019, 228, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, H.; Liu, Z.; Jiang, G. Functionalized Superhydrophobic Quartz Fabric with Electro-Photo-Thermal Conversion Performance: Designed for Low-Cost and Efficient Self-Heating Deicing. Surf. Coat. Technol. 2021, 425, 127–646. [Google Scholar] [CrossRef]
- Zhang, Z.; Lusi, A.; Hu, H.; Bai, X.; Hu, H. An Experimental Study on the Detrimental Effects of Deicing Fluids on the Performance of Icephobic Coatings for Aircraft Icing Mitigation. Aerosp. Sci. Technol. 2021, 119, 107090. [Google Scholar] [CrossRef]
- Daulbayev, C.; Sultanov, F.; Bakbolat, B.; Daulbayev, O. 0D, 1D and 2D Nanomaterials for Visible Photoelectrochemical Water Splitting. A Review. Int. J. Hydrog. Energy 2020, 45, 33325–33342. [Google Scholar] [CrossRef]
- Hasan, M.Z. Deicing of a GLAss Fiber REinforced Aluminum Laminate–Part 1: Experiments and Numerical Simulation. Therm. Sci. Eng. Prog. 2020, 20, 100–737. [Google Scholar] [CrossRef]
- Sultanov, F.R.; Daulbayev, C.; Bakbolat, B.; Mansurov, Z.A.; Urazgaliyeva, A.A.; Ebrahim, R.; Pei, S.S.; Huang, K.-P. Microwave-Enhanced Chemical Vapor Deposition Graphene Nanoplatelets-Derived 3D Porous Materials for Oil/Water Separation. Carbon Lett. 2020, 30, 81–92. [Google Scholar] [CrossRef]
- Sultanov, F.; Daulbayev, C.; Azat, S.; Kuterbekov, K.; Bekmyrza, K.; Bakbolat, B.; Bigaj, M.; Mansurov, Z. Influence of Metal Oxide Particles on Bandgap of 1D Photocatalysts Based on SrTiO3/PAN Fibers. Nanomaterials 2020, 10, 1734. [Google Scholar] [CrossRef]
- Seitkalieva, M.M.; Samoylenko, D.E.; Lotsman, K.A.; Rodygin, K.S.; Ananikov, V.P. Metal Nanoparticles in Ionic Liquids: Synthesis and Catalytic Applications. Coord. Chem. Rev. 2021, 445, 213–982. [Google Scholar] [CrossRef]
- Petrenko, V.F.; Sullivan, C.R.; Kozlyuk, V.; Petrenko, F.V.; Veerasamy, V. Pulse Electro-Thermal de-Icer (PETD). Cold Reg. Sci. Technol. 2011, 65, 70–78. [Google Scholar] [CrossRef]
- Ming, Y.; Duan, Y.; Zhang, S.; Zhu, Y.; Wang, B. Self-Heating 3D Printed Continuous Carbon Fiber/Epoxy Mesh and Its Application in Wind Turbine Deicing. Polym. Test. 2020, 82, 106–309. [Google Scholar] [CrossRef]
- Pan, L.; Liu, Z.; Kızıltaş, O.; Zhong, L.; Pang, X.; Wang, F.; Zhu, Y.; Ma, W.; Lv, Y. Carbon Fiber/Poly Ether Ether Ketone Composites Modified with Graphene for Electro-Thermal Deicing Applications. Compos. Sci. Technol. 2020, 192, 108–117. [Google Scholar] [CrossRef]
- Sassani, A.; Arabzadeh, A.; Ceylan, H.; Kim, S.; Sadati, S.M.S.; Gopalakrishnan, K.; Taylor, P.C.; Abdualla, H. Carbon Fiber-Based Electrically Conductive Concrete for Salt-Free Deicing of Pavements. J. Clean. Prod. 2018, 203, 799–809. [Google Scholar] [CrossRef]
- Yao, X.; Hawkins, S.C.; Falzon, B.G. An Advanced Anti-Icing/de-Icing System Utilizing Highly Aligned Carbon Nanotube Webs. Carbon 2018, 136, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, T.; Karak, N. Multi-Walled Carbon Nanotubes Reinforced Interpenetrating Polymer Network with Ultrafast Self-Healing and Anti-Icing Attributes. J. Colloid Interface Sci. 2019, 540, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Falzon, B.G.; Robinson, P.; Frenz, S.; Gilbert, B. Development and Evaluation of a Novel Integrated Anti-Icing/de-Icing Technology for Carbon Fibre Composite Aerostructures Using an Electro-Conductive Textile. Compos. Part Appl. Sci. Manuf. 2015, 68, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Liao, C.; Xia, Y.; Chai, W.; Xie, C.; Zhang, W.; Liu, Y. Facile Fabrication of Robust, Biomimetic and Superhydrophobic Polymer/Graphene-Based Coatings with Self-Cleaning, Oil-Water Separation, Anti-Icing and Corrosion Resistance Properties. Colloids Surf. Physicochem. Eng. Asp. 2021, 627, 127–164. [Google Scholar] [CrossRef]
- Wang, P.; Yao, T.; Li, Z.; Wei, W.; Xie, Q.; Duan, W.; Han, H. A Superhydrophobic/Electrothermal Synergistically Anti-Icing Strategy Based on Graphene Composite. Compos. Sci. Technol. 2020, 198, 108–307. [Google Scholar] [CrossRef]
- Redondo, O.; Prolongo, S.G.; Campo, M.; Sbarufatti, C.; Giglio, M. Anti-Icing and de-Icing Coatings Based Joule’s Heating of Graphene Nanoplatelets. Compos. Sci. Technol. 2018, 164, 65–73. [Google Scholar] [CrossRef]
- Ba, H.; Truong-Phuoc, L.; Romero, T.; Sutter, C.; Nhut, J.-M.; Schlatter, G.; Giambastiani, G.; Pham-Huu, C. Lightweight, Few-Layer Graphene Composites with Improved Electro-Thermal Properties as Efficient Heating Devices for de-Icing Applications. Carbon 2021, 182, 655–668. [Google Scholar] [CrossRef]
- Xie, X.-M.; Su, J.-F.; Guo, Y.-D.; Wang, L.-Q. Evaluation of a Cleaner De-Icing Production of Bituminous Material Blending with Graphene by Electrothermal Energy Conversion. J. Clean. Prod. 2020, 274, 122–947. [Google Scholar] [CrossRef]
- Abbas, S.; Park, C.W. Frosting and Defrosting Assessment of Carbon Fiber Reinforced Polymer Composite with Surface Wettability and Resistive Heating Characteristics. Int. J. Heat Mass Transf. 2021, 169, 120–883. [Google Scholar] [CrossRef]
- Rashid, T.; Liang, H.-L.; Taimur, M.; Chiodarelli, N.; Khawaja, H.A.; Edvardsen, K.; de Volder, M. Roll to Roll Coating of Carbon Nanotube Films for Electro Thermal Heating. Cold Reg. Sci. Technol. 2021, 182, 103–210. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, G.; Cai, D.; Zhou, F.; Cai, L. Effect of Internal Heating on Delamination Properties of Deicing Composite Curved Beams under Four-Point Bending. Compos. Struct. 2021, 256, 113084. [Google Scholar] [CrossRef]
- Zanjani, J.S.M.; Okan, B.S.; Pappas, P.-N.; Galiotis, C.; Menceloglu, Y.Z.; Yildiz, M. Tailoring Viscoelastic Response, Self-Heating and Deicing Properties of Carbon-Fiber Reinforced Epoxy Composites by Graphene Modification. Compos. Part Appl. Sci. Manuf. 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, Z.; Liu, Y.; Leng, J. Self-Heating Fiber Reinforced Polymer Composite Using Meso/Macropore Carbon Nanotube Paper and Its Application in Deicing. Carbon 2014, 66, 154–163. [Google Scholar] [CrossRef]
- Pourbagian, M.; Habashi, W.G. Aero-Thermal Optimization of in-Flight Electro-Thermal Ice Protection Systems in Transient de-Icing Mode. Int. J. Heat Fluid Flow 2015, 54, 167–182. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Kempers, R.; Amirfazli, A. 3D Printed Electro-Thermal Anti-or de-Icing System for Composite Panels. Cold Reg. Sci. Technol. 2019, 166, 102–844. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Liu, X.; Liu, H.; Zhang, D. Development of High-Efficient Synthetic Electric Heating Coating for Anti-Icing/de-Icing. Surf. Coat. Technol. 2018, 349, 340–346. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Li, Z.; Jin, H.; Tang, L. Influence of Deicing Salt on the Surface Properties of Concrete Specimens after 20 Years. Constr. Build. Mater. 2021, 295, 123–643. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X. Laboratory Evaluation of a Sustainable Additive for Anti-Icing Asphalt. Cold Reg. Sci. Technol. 2021, 189, 103–338. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Xia, H.; Jing, B.; Zhang, Q. Review of Ice-Pavement Adhesion Study and Development of Hydrophobic Surface in Pavement Deicing. J. Traffic Transp. Eng. Engl. Ed. 2018, 5, 224–238. [Google Scholar] [CrossRef]
- Dan, H.-C.; He, L.-H.; Xu, B. Experimental Investigation on Skid Resistance of Asphalt Pavement under Various Slippery Conditions. Int. J. Pavement Eng. 2017, 18, 485–499. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Ceylan, H.; Kim, S.; Gopalakrishnan, K.; Sassani, A. Superhydrophobic Coatings on Asphalt Concrete Surfaces: Toward Smart Solutions for Winter Pavement Maintenance. Transp. Res. Rec. J. Transp. Res. Board 2016, 2551, 10–17. [Google Scholar] [CrossRef]
- Mohammed, A.G.; Ozgur, G.; Sevkat, E. Electrical Resistance Heating for Deicing and Snow Melting Applications: Experimental Study. Cold Reg. Sci. Technol. 2019, 160, 128–138. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Yuan, H.; Luo, S.; Han, X. Fabrication and Heat Conduction Performance Investigation of a Heat Insulation Conductive Bonding Layer for Asphalt Pavements. Constr. Build. Mater. 2020, 253, 119–191. [Google Scholar] [CrossRef]
- Wang, C.; Fan, Z.; Shu, C.; Han, X. Preparation and Performance of Conductive Tack Coat on Asphalt Pavement. Constr. Build. Mater. 2020, 251, 118–949. [Google Scholar] [CrossRef]
- Gao, J.; Guo, H.; Wang, X.; Wang, P.; Wei, Y.; Wang, Z.; Huang, Y.; Yang, B. Microwave Deicing for Asphalt Mixture Containing Steel Wool Fibers. J. Clean. Prod. 2019, 206, 1110–1122. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, J.; Ai, T.; Zhao, P. Laboratory Investigation on Microwave Deicing Function of Micro Surfacing Asphalt Mixtures Reinforced by Carbon Fiber. J. Test. Eval. 2014, 42, 20130118. [Google Scholar] [CrossRef]
- Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave Heating Applications in Environmental Engineering—A Review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Ding, L.; Wang, X.; Zhang, W.; Wang, S.; Zhao, J.; Li, Y. Microwave Deicing Efficiency: Study on the Difference between Microwave Frequencies and Road Structure Materials. Appl. Sci. 2018, 8, 2360. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, X.; Wang, Y.; Luo, S. Engineering Properties and Microwave Heating Induced Ice-Melting Performance of Asphalt Mixture with Activated Carbon Powder Filler. Constr. Build. Mater. 2019, 197, 50–62. [Google Scholar] [CrossRef]
- Li, C.; Wu, S.; Chen, Z.; Tao, G.; Xiao, Y. Improved Microwave Heating and Healing Properties of Bitumen by Using Nanometer Microwave-Absorbers. Constr. Build. Mater. 2018, 189, 757–767. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Lu, S.; Chen, H. Investigation on Dielectric Properties and Microwave Heating Efficiencies of Various Concrete Pavements during Microwave Deicing. Constr. Build. Mater. 2019, 225, 55–66. [Google Scholar] [CrossRef]
- Lu, S.; Bai, E.; Xu, J.; Chen, J. Research on Electromagnetic Properties and Microwave Deicing Performance of Carbon Fiber Modified Concrete. Constr. Build. Mater. 2021, 286, 122–868. [Google Scholar] [CrossRef]
- Wang, B.; Feng, X.; Liu, L. Enhanced Electrothermal Effect of Carbon Fibrous Composites Decorated with High Conductive Carbon Nanotube Webs. Chin. J. Aeronaut. 2021, 34, 243–253. [Google Scholar] [CrossRef]
- Ivall, J.; Renault-Crispo, J.-S.; Coulombe, S.; Servio, P. Ice-Dependent Liquid-Phase Convective Cells during the Melting of Frozen Sessile Droplets Containing Water and Multiwall Carbon Nanotubes. Int. J. Heat Mass Transf. 2016, 101, 27–37. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Liu, X.; Wang, Z.; Zhu, Y.; Zhou, Y. The Development of Electric Heating Coating with Temperature Controlling Capability for Anti-Icing/de-Icing. Cold Reg. Sci. Technol. 2021, 184, 103–234. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Zhao, Z.; Yan, Y.; Zhang, D. Slippery Liquid-Infused Porous Electric Heating Coating for Anti-Icing and de-Icing Applications. Surf. Coat. Technol. 2019, 374, 889–896. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Liu, X.; Wang, Z.; Zhu, Y.; Zhou, Y. Novel Sandwich Structural Electric Heating Coating for Anti-Icing/de-Icing on Complex Surfaces. Surf. Coat. Technol. 2020, 404, 126–489. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Xiao, H. Self-Deicing Road System with a CNFP High-Efficiency Thermal Source and MWCNT/Cement-Based High-Thermal Conductive Composites. Cold Reg. Sci. Technol. 2013, 86, 22–35. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Wang, Z.; Ning, M. Utilization of Magnetite as Microwave Absorber to Prepare Microwave-Heatable Aggregate for Deicing in Cementitious Composite. Constr. Build. Mater. 2019, 227, 116–664. [Google Scholar] [CrossRef]
- Wei, W.; Shao, Z.; Qiao, R.; Chen, W.; Zhou, H.; Yuan, Y. Recent Development of Microwave Applications for Concrete Treatment. Constr. Build. Mater. 2021, 269, 121–224. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Ning, M. Optimization of Electromagnetic Wave Absorption Bandwidth of Cement-Based Composites with Doped Expanded Perlite. Constr. Build. Mater. 2020, 259, 119–863. [Google Scholar] [CrossRef]
- Parandoush, P.; Lin, D. A Review on Additive Manufacturing of Polymer-Fiber Composites. Compos. Struct. 2017, 182, 36–53. [Google Scholar] [CrossRef]
Heating Panel | Time to Reach 0 °C (min) | |||
---|---|---|---|---|
−5 °C | −10 °C | −20 °C | −30 °C | |
Carbon filament | 30.17 | 66.10 | 207.50 | Not sufficient |
Unidirectional carbon fabric | 30.25 | 67.33 | 208.83 | Not sufficient |
Woven carbon fabric | 39.33 | 83.50 | 226.67 | Not sufficient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenzhebayeva, A.; Bakbolat, B.; Sultanov, F.; Daulbayev, C.; Mansurov, Z. A Mini-Review on Recent Developments in Anti-Icing Methods. Polymers 2021, 13, 4149. https://doi.org/10.3390/polym13234149
Kenzhebayeva A, Bakbolat B, Sultanov F, Daulbayev C, Mansurov Z. A Mini-Review on Recent Developments in Anti-Icing Methods. Polymers. 2021; 13(23):4149. https://doi.org/10.3390/polym13234149
Chicago/Turabian StyleKenzhebayeva, Adelya, Baglan Bakbolat, Fail Sultanov, Chingis Daulbayev, and Zulkhair Mansurov. 2021. "A Mini-Review on Recent Developments in Anti-Icing Methods" Polymers 13, no. 23: 4149. https://doi.org/10.3390/polym13234149
APA StyleKenzhebayeva, A., Bakbolat, B., Sultanov, F., Daulbayev, C., & Mansurov, Z. (2021). A Mini-Review on Recent Developments in Anti-Icing Methods. Polymers, 13(23), 4149. https://doi.org/10.3390/polym13234149