Germanium-Titanium-π Polymer Composites as Functional Textiles for Clinical Strategy to Evaluate Blood Circulation Improvement and Sexual Satisfaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Ge-Ti-π Textile
2.1.1. Preparation of Far-Infrared Masterbatch
2.1.2. Preparation of Far-Infrared Fibers and Textiles
2.2. Ge-Ti-π Textile Characterization
2.3. Color Fastness and Pilling Resistant Tests
2.4. Antibacterial and Antifungal Tests
2.5. Study Design and Participants
2.6. Data Collection
2.6.1. Ge-Ti-π Textile Treatment for Patients with Maintenance HD
2.6.2. Ge-Ti-π Textile Treatment for Patients with VED
2.7. Statistical Analysis
3. Results
3.1. Ge-Ti-π Textile Characterization
3.2. Laundering Durability of the Ge-Ti-π Fiber and Antibacterial and Antifungal Activities of the Ge-Ti-π Textile
3.3. Ge-Ti-π Textile Treatment for Patients with Maintenance HD
3.4. Ge-Ti-π Textile Treatment for VED Patients
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stratton, S.; Shelke, N.B.; Hoshino, K.; Rudraiah, S.; Kumbar, S.G. Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 2016, 1, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Złotek, U.; Zielińska, E. Digestion and bioavailability of bioactive phytochemicals. Int. J. Food Sci. 2017, 52, 291–305. [Google Scholar] [CrossRef]
- Gebelein, C.G.; Carraher, C.E. (Eds.) Perspectives in Bioactive Polymers. In Biological Activities of Polymers; American Chemical Society: Washington, DC, USA, 1982; Volume 186, pp. 1–9. [Google Scholar]
- West, J.L.; Hubbell, J.A. Bioactive Polymers. In Synthetic Biodegradable Polymer Scaffolds; Atala, A., Mooney, D.J., Eds.; Birkhäuser Boston: Boston, MA, USA, 1997; pp. 83–95. [Google Scholar]
- Wang, G.; Yu, D.; Kelkar, A.D.; Zhang, L. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci. 2017, 75, 73–107. [Google Scholar] [CrossRef]
- Zagho, M.M.; Hussein, E.A.; Elzatahry, A.A. Recent Overviews in Functional Polymer Composites for Biomedical Applications. Polymers 2018, 10, 739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, M.; Najeeb, S.; Khurshid, Z.; Vazirzadeh, M.; Zohaib, S.; Najeeb, B.; Sefat, F. Potential of Electrospun Nanofibers for Biomedical and Dental Applications. Materials 2016, 9, 73. [Google Scholar] [CrossRef]
- Qasim, S.B.; Zafar, M.S.; Najeeb, S.; Khurshid, Z.; Shah, A.H.; Husain, S.; Rehman, I.U. Electrospinning of Chitosan-Based Solutions for Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 2018, 19, 407. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, A. Volatile Compounds Detection by IR Acousto-Optic Detectors. In Unexploded Ordnance Detection and Mitigation; Byrnes, J., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 21–59. [Google Scholar]
- Vatansever, F.; Hamblin, M.R. Far infrared radiation (FIR): Its biological effects and medical applications. Photonics Lasers Med. 2012, 4, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.Y.; Chiu, J.H.; Yang, S.D.; Hsu, Y.C.; Lui, W.Y.; Wu, C.W. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol. Photoimmunol. Photomed. 2006, 22, 78–86. [Google Scholar] [CrossRef]
- Tsai, S.R.; Hamblin, M.R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B 2017, 170, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Kipshidze, N.; Nikolaychik, V.; Muckerheidi, M.; Keelan, M.H.; Chekanov, V.; Maternowski, M.; Chawla, P.; Hernandez, I.; Iyer, S.; Dangas, G.; et al. Effect of short pulsed nonablative infrared laser irradiation on vascular cells in vitro and neointimal hyperplasia in a rabbit balloon injury model. Circulation 2001, 104, 1850–1855. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Liu, X.M.; Peyton, K.; Wang, H.; Yang, W.C.; Lin, S.J.; Durante, W. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, Y.; Biro, S.; Kamogawa, Y.; Yoshifuku, S.; Eto, H.; Orihara, K.; Yu, B.; Kihara, T.; Miyata, M.; Hamasaki, S.; et al. Repeated sauna therapy increases arterial endothelial nitric oxide synthase expression and nitric oxide production in cardiomyopathic hamsters. Circ. J. 2005, 69, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Barthelmes, J.; Nägele, M.P.; Ludovici, V.; Ruschitzka, F.; Sudano, I.; Flammer, A.J. Endothelial dysfunction in cardiovascular disease and Flammer syndrome-similarities and differences. EPMA J. 2017, 8, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.F.; Chen, F.A.; Tan, A.C.; Lee, T.L.; Chan, C.H.; Lin, C.C. Far-infrared therapy improves ankle brachial index in hemodialysis patients with peripheral artery disease. Heart Vessel. 2019, 34, 435–441. [Google Scholar] [CrossRef]
- Meller, S.M.; Stilp, E.; Walker, C.N.; Mena-Hurtado, C. The link between vasculogenic erectile dysfunction, coronary artery disease, and peripheral artery disease: Role of metabolic factors and endovascular therapy. J. Invasive Cardiol. 2013, 25, 313–319. [Google Scholar]
- Malovrh, M. Native arteriovenous fistula: Preoperative evaluation. Am. J. Kidney Dis. 2002, 39, 1218–1225. [Google Scholar] [CrossRef]
- Fila, B.; Ibeas, J.; Tey, R.R.; Lovčić, V.; Zibar, L. Arteriovenous fistula for haemodialysis: The role of surgical experience and vascular access education. Nefrologia 2016, 36, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Hatzimouratidis, K.; Amar, E.; Eardley, I.; Giuliano, F.; Hatzichristou, D.; Montorsi, F.; Vardi, Y.; Wespes, E.; European Association of Urology. Guidelines on male sexual dysfunction: Erectile dysfunction and premature ejaculation. Eur. Urol. 2010, 57, 804–814. [Google Scholar] [CrossRef]
- Lue, T.F. Erectile dysfunction. N. Engl. J. Med. 2000, 342, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Chen, Y.C.; Chen, T.H.; Sue, Y.M.; Cheng, T.H.; Chen, J.R.; Chen, C.H. Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human umbilical vein endothelial cells. PLoS ONE 2012, 7, e30674. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Chang, C.F.; Lai, M.Y.; Chen, T.W.; Lee, P.C.; Yang, W.C. Far-infrared therapy: A novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J. Am. Soc. Nephrol. 2007, 18, 985–992. [Google Scholar] [CrossRef] [Green Version]
- Uozumi, Y.; Nawashiro, H.; Sato, S.; Kawauchi, S.; Shima, K.; Kikuchi, M. Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg. Med. 2010, 42, 566–576. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.; Cho, D.H.; Park, Y.M.; Kang, D.H.; Jo, I. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem. Biophys. Res. Commun. 2013, 436, 601–606. [Google Scholar] [CrossRef]
- Celigoj, F.A.; Coward, R.M.; Timberlake, M.D.; Smith, R.P. Anatomy and Physiology of Erection, Ejaculation, and Orgasm BT. In Management of Sexual Dysfunction in Men and Women: An Interdisciplinary Approach; Lipshultz, L.I., Pastuszak, A.W., Goldstein, A.T., Giraldi, A., Perelman, M.A., Eds.; Springer: New York, NY, USA, 2016; pp. 33–41. [Google Scholar]
- Mantegazza, V.; Contini, M.; Botti, M.; Ferri, A.; Dotti, F.; Berardi, P.; Agostoni, P. Improvement in exercise capacity and delayed anaerobic metabolism induced by far-infrared-emitting garments in active healthy subjects: A pilot study. Eur. J. Prev. Cardiol. 2018, 25, 1744–1751. [Google Scholar] [CrossRef] [PubMed]
- Dyer, J. Infrared functional textiles. In Functional Textiles for Improved Performance, Protection and Health; Pan, N., Sun, G., Eds.; Woodhead Publishing: Sawston, UK, 2011; pp. 184–197. [Google Scholar]
- Stott, T.L.; Wolf, M.O. Electronic interactions in metallated polythiophenes: What can be learned from model complexes. Coord. Chem. Rev. 2003, 246, 89–101. [Google Scholar] [CrossRef]
- Grancarić, A.M.; Jerković, I.; Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive polymers for smart textile applications. J. Ind. Text. 2018, 48, 612–642. [Google Scholar] [CrossRef]
- Rosenberg, E. Germanium: Environmental occurrence, importance and speciation. Rev. Environ. Sci. Biotechnol. 2009, 8, 29. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Li, J.; Zhu, Y.; Ge, M. Negative air ion release and far infrared emission properties of polyethylene terephthalate/germanium composite fiber. J. Eng. Fibers Fabr. 2017, 12, 155892501701200107. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, Y.J. Research on the Performance of the Germanium Fiber and Yarn. AMR 2012, 503–504, 520–524. [Google Scholar] [CrossRef]
- ITOFINISH GERMANIUM. Available online: https://www.magnacolours.com/wp-content/uploads/2019/08/ITOFINISH-GERMANIUM-TDS0619.pdf (accessed on 3 November 2021).
- Kubiliene, D.; Sankauskaite, A.; Abraitiene, A.; Krauledas, S.; Barauskas, R. Investigation of thermal properties of ceramiccontaining knitted textile materials. Fibres Text. East. Eur. 2016, 24, 63–66. [Google Scholar] [CrossRef]
- Faisal, A.M.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, Y.; Wang, L. Analysis of the thermal comfort properties and FIR infrared emission characteristics of ceramic nanofillers imbedded fabrics. In Proceedings of the 19th World Textile Conference-Autex, Ghent, Belgium, 11–15 June 2019; p. 3. [Google Scholar]
- Fu, G.; Vary, P.S.; Lin, C.T. Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 2005, 109, 8889–8898. [Google Scholar] [CrossRef]
- Bozzi, A.; Yuranova, T.; Kiwi, J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J. Photochem. Photobiol. A 2005, 172, 27–34. [Google Scholar] [CrossRef]
- Faisal, A.M.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, Y.; Wang, L. Far-infrared emission properties and thermogravimetric analysis of ceramic-embedded polyurethane films. Polymers 2021, 13, 686. [Google Scholar] [CrossRef]
- Mian, A.; Newaz, G.; Vendra, L.; Georgive, D.G.; Auner, G.; Witte, R.; Herfurth, H. Laser bonded microjoints between titanium and polyimide for applications in medical implants. J. Mater. Sci. 2005, 1, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Ogbonna, V.E.; Popoola, A.P.I.; Popoola, O.M.; Adeosun, S.O. A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: Challenges and recommendations for future improvement. Polym. Bull. 2020, 1–33. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Li, N.; Yin, J.; Feng, Y.; Liu, Y.; Li, J.; Zhao, H.; Yue, D.; Zhu, C.; et al. Microstructure and electrical properties of polyimide-based composites reinforced by high-aspect-ratio titanium oxide nanowires. Surf. Coat. Technol. 2019, 361, 425–431. [Google Scholar] [CrossRef]
- Kuo, C.F.J.; Tzeng, R.E.; Lan, W.L.; Peng, K.C. A study on blending polyethylene terephthalate with titanium dioxide particles in melt spinning process parameter optimization. Text. Res. J. 2013, 83, 813–826. [Google Scholar] [CrossRef]
- Online Textile Academy. Melt Spinning Process: Advantages and Disadvantages of Melt Spinning. Available online: https://www.onlinetextileacademy.com/melt-spinning-process-advantages-and-disadvantages-of-melt-spinning/ (accessed on 4 November 2021).
- Qin, Y. A brief description of textile fibers. In Medical Textile Materials; Woodhead Publishing Series in Textiles: Cambridge, UK, 2016; pp. 23–42. [Google Scholar]
- Hackley, V.A.; Clogston, J.D. Measuring the Size of Nanoparticles in Aqueous Media Using Batch-Mode Dynamic Light Scattering. National Institute of Standards and Technology, U.S. Department of Commerce. 2015. Available online: https://www.nist.gov/publications/measuring-size-nanoparticles-aqueous-media-using-batch-mode-dynamic-light-scattering (accessed on 29 October 2021).
- Souza, T.G.F.; Ciminelli, V.S.T.; Mohallem, N.D.S. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J. Phys. Conf. Ser. 2016, 733, 012039. [Google Scholar] [CrossRef] [Green Version]
- Han, J.S.; Rowell, J.S. Chemical Composition of Fibers. In Paper and Composites from Agro-Based Resources; Rowell, R.M., Young, R.A., Rowell, J.K., Eds.; Forest Products Laboratory One Gifford Pinchot Drive: Madison, WI, USA, 1997; pp. 83–134. [Google Scholar]
- ASTM International. Available online: https://www.astm.org/Standards/D2256.htm (accessed on 13 September 2021).
- Chao, Y.C.; Pan, Y.I. Trisazo dyes derived from 4,4′-diaminodiphenylsulphide: Substitutes for C.I. Direct black 38 and C.I. Direct Green 1. Dyes Pigm. 1996, 31, 253–262. [Google Scholar] [CrossRef]
- Guerra, M.A.; Swerts, J.P.; Funcia, M.A.; Campos, M.G.N. Antimicrobial activity of PET- silver nanocomposite filaments. MSF 2018, 930, 212–217. [Google Scholar] [CrossRef]
- Balakumaran, M.D.; Ramachandran, R.; Jagadeeswari, S.; Kalaichelvan, P.T. In vitro biological properties and characterization of nanosilver coated cotton fabrics—An application for antimicrobial textile finishing. Int. Biodeterior. 2016, 107, 48–55. [Google Scholar] [CrossRef]
- Public Workshop: Evaluating Inclusion and Exclusion Criteria in Clinical Trials, Workshop Report. Available online: https://www.fda.gov/media/134754/download (accessed on 29 October 2021).
- Fisher, W.A.; Gruenwald, I.; Jannini, E.A.; Lev-Sagie, A.; Lowenstein, L.; Pyke, R.E.; Reisman, Y.; Revicki, D.A.; Rubio-Aurioles, E. Standards for clinical trials in male and female sexual dysfunction: Iii. unique aspects of clinical trials in male sexual dysfunction. J. Sex. Med. 2017, 14, 3–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Griensven, H.; Strong, J.; Unruh, A. Pain: A Textbook for Health Professionals; Churchill Livingstone: London, UK, 2013. [Google Scholar]
- Ware Jr, J.E. SF-36 health survey update. Spine 2000, 25, 3130–3139. [Google Scholar] [CrossRef]
- Inoue, S.; Ikeuchi, M.; Okumura, K.; Nakamura, M.; Kawakami, C.; Ikemoto, T.; Kawasaki, M.; Tani, T.; Ushida, T. Health survey of numbness/pain and its associated factors in Kotohira, Japan. PLoS ONE 2013, 8, e60079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, R.C.; Cappelleri, J.C.; Smith, M.D.; Lipsky, J.; Peña, B.M. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int. J. Impot. Res. 1999, 11, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, A.L.; Reis, L.O.; Saade, R.D.; Santos, C.A., Jr.; Lima, M.L.; Fregonesi, A. Validation of Portuguese version of Quality of Erection Questionnaire (QEQ) and comparison to International Index of Erectile Function (IIEF) and RAND 36-Item Health Survey. Int. Braz. J. Urol. 2015, 41, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Symonds, T.; Perelman, M.A.; Althof, S.; Giuliano, F.; Martin, M.; May, K.; Abraham, L.; Crossland, A.; Morris, M. Development and validation of a premature ejaculation diagnostic tool. Eur. Urol. 2007, 52, 565–573. [Google Scholar] [CrossRef]
- Poulakis, V.; Ferakis, N.; Witzsch, U.; de Vries, R.; Becht, E. Erectile dysfunction after transurethral prostatectomy for lower urinary tract symptoms: Results from a center with over 500 patients. Asian J. Androl. 2006, 8, 69–74. [Google Scholar] [CrossRef]
- Wiegand, C.; Moritz, S.; Hessler, N.; Kralisch, D.; Wesarg, F.; Müller, F.A.; Fischer, D.; Hipler, U.C. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J. Mater. Sci. Mater. Med. 2015, 26, 245. [Google Scholar] [CrossRef]
- Japan Far Infrared Rays Association (JIRA). Available online: http://www.enseki.or.jp/e_tokusei.php#6 (accessed on 7 September 2021).
- Meng, J.; Jin, W.; Liang, J.; Ding, Y.; Gan, K.; Yuan, Y. Effects of particle size on far infrared emission properties of tourmaline superfine powders. J. Nanosci. Nanotechnol. 2010, 10, 2083–2087. [Google Scholar] [CrossRef] [PubMed]
- Kuyumcu, H.Z. Compacting of coals in cokemaking. In New Trends in Coal Conversion; Suárez-Ruiz, I., Diez, M.A., Rubiera, F., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 293–334. [Google Scholar]
- Kaboorani, A. Thermal properties of composites made of heat-treated wood and polypropylene. J. Compos. Mater. 2009, 43, 2599–2607. [Google Scholar] [CrossRef]
- Pan, Y.; Han, G.; Mao, Z.; Zhang, Y.; Duan, H.; Huang, J.; Qu, L. Structural characteristics and physical properties of lotus fibers obtained from Nelumbo nucifera petioles. Carbohydr. Polym. 2011, 85, 188–195. [Google Scholar] [CrossRef]
- Behzadnia, A.; Montazer, M.; Rashidi, A.; Mahmoudi Rad, M. Rapid sonosynthesis of N-doped nano TiO2 on wool fabric at low temperature: Introducing self-cleaning, hydrophilicity, antibacterial/antifungal properties with low alkali solubility, yellowness and cytotoxicity. Photochem. Photobiol. 2014, 90, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Lee, M.Y.; Huang, J.C.; Kuo, I.C.; Mai, H.C.; Kuo, P.L.; Chang, J.M.; Hwang, S.J.; Chen, H.C. Association of far-infrared radiation therapy and ankle-brachial index of patients on hemodialysis with peripheral artery occlusive disease. Int. J. Med. Sci. 2016, 13, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Loturco, I.; Abad, C.; Nakamura, F.Y.; Ramos, S.P.; Kobal, R.; Gil, S.; Pereira, L.A.; Burini, F.; Roschel, H.; Ugrinowitsch, C.; et al. Effects of far infrared rays emitting clothing on recovery after an intense plyometric exercise bout applied to elite soccer players: A randomized double-blind placebo-controlled trial. Biol. Sport 2016, 33, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, T.K. In vitro and in vivo studies of the biological effects of bioceramic (a material of emitting high performance far-infrared ray) irradiation. Chin. J. Physiol. 2015, 58, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ge-Ti-π Textile (in POY; Control) | Ge-Ti-π Textile (in DTY; Experimental) | ||
---|---|---|---|
Ash Content (%) | 0.45 | 0.49 | |
DTY Fiber Strength (g/d) | Elongation (%) | CV (%) | |
Ge-Ti-π textile (with DTY manufactured by process department; control) | 2.19 | 15.31 | 4.00 |
Ge-Ti-π textile (with DTY manufactured by fiber group; experimental) | 3.05 | 18.98 | 1.21 |
Sample (Product) | Degree |
---|---|
Color Fastness Test | |
Ge-Ti-π fibers | 4–5 |
Acetate fibers | 4–5 |
Cotton fibers | 4–5 |
Nylon fibers | 4–5 |
Polyester fibers | 4–5 |
Acrylic fibers | 4–5 |
Wool fibers | 4–5 |
Pilling Resistance Test | |
Ge-Ti-π fibers | 4 |
Normal Textile | Ge-Ti-π Textile | |||||
---|---|---|---|---|---|---|
Pre-Test | Post-Test | p-Value | Pre-Test | Post-Test | p-Value | |
n | 32 | 34 | ||||
Numbness+ | 10 (31) | 9 (28) | *** | 11 (32) | 6 (18) | *** |
Discomfort+ | 13 (41) | 12 (38) | *** | 14 (41) | 9 (26) | *** |
Pre-Test | Post-Test | p-Value | |
---|---|---|---|
Mean ± SE | Mean ± SE | ||
R Brachial ABI | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.584 |
L Brachial ABI | 0.97 ± 0.01 | 0.97 ± 0.01 | 0.701 |
R Thigh ABI | 1.09 ± 0.06 | 1.13 ± 0.04 | 0.243 |
L Thigh ABI | 1.16 ± 0.03 | 1.19 ± 0.03 | 0.352 |
R BI Knee ABI | 1.09 ± 0.06 | 1.12 ± 0.03 | 0.216 |
L BI Knee ABI | 1.14 ± 0.05 | 1.15 ± 0.04 | 0.369 |
R Ankle ABI | 1.08 ± 0.04 | 1.10 ± 0.04 | 0.507 |
L Ankle ABI | 1.08 ± 0.04 | 1.11 ± 0.04 | 0.010 ** |
Avg R MVO/SVC | 0.74 ± 0.03 | 0.78 ± 0.04 | 0.206 |
Avg L MVO/SVC | 0.73 ± 0.04 | 0.74 ± 0.04 | 0.785 |
Blood Flow | Pre-Test | Post-Test | p-Value |
---|---|---|---|
Mean ± SE (cm/s) | Mean ± SE (cm/s) | ||
Right Hand | 25.76 ± 2.02 | 28.91 ± 2.17 | 0.041 * |
Left Hand | 20.65 ± 1.88 | 26.42 ± 1.84 | 0.056 |
ΔMonth | Experiment | Control | ||||||
---|---|---|---|---|---|---|---|---|
n | Mean Age (Years) | Blood Flow Velocity Change (Mean ± SE (cm/s)) | p-Value | n | Mean Age (Years) | Blood Flow Velocity Change (Mean ± SE (cm/s)) | p-Value | |
ΔM1-0 | 6 | 53.5 ± 0.19 | 0.64 ± 0.72 | 0.36 | 3 | 49.67 ± 0.09 | −1.67 ± 1.33 | 0.29 |
ΔM2-1 | 0.06 ± 0.69 | 0.48 | 1.22 ± 0.88 | 0.36 | ||||
ΔM3-2 | 0.72 ± 1.27 | 0.25 | 0.01 ± 0.61 | 0.5 |
ΔMonth | n | IIEF-5 | QEQ | PEDT | IPSS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Experiment | p | Control | Experiment | p | Control | Experiment | p | Control | Experiment | p | |||
Mild Symptoms | ΔM2-1 | 22 | −0.67 ± 2.17 | 1.50 ± 1.50 | 0.447 | 0.00 ± 2.72 | −1.67 ± 2.51 | 0.712 | −5.00 ± 4.47 | 1.88 ± 1.88 | 0.106 | 4.76 ± 7.69 | −1.07 ± 1.35 | 0.260 |
ΔM3-2 | 19 | 0.80 ± 1.50 | 2.86 ± 2.50 | 0.641 | −2.00 ± 3.09 | 4.29 ± 4.47 | 0.432 | −4.00 ± 5.34 | −4.29 ± 2.22 | 0.954 | −3.43 ± 1.67 | −2.65 ± 2.15 | 0.840 | |
ΔM3-1 | 19 | 0.00 ± 1.26 | 4.00 ± 1.73 | 0.205 | 0.00 ± 1.05 | 1.67 ± 3.40 | 0.778 | −5.00 ± 5.70 | −2.50 ± 2.15 | 0.615 | −6.29 ± 2.91 | −3.88 ± 2.59 | 0.616 | |
Severe Symptoms | ΔM2-1 | 8 | −2.67 ± 14.11 | 11.20 ± 4.63 | 0.292 | −1.11 ± 1.11 | 20.67 ± 10.61 | 0.175 | −6.67 ± 19.22 | −12.00 ± 11.47 | 0.806 | −15.24 ± 16.69 | −3.43 ± 4.98 | 0.427 |
ΔM3-2 | 8 | −6.67 ± 5.33 | 8.00 ± 4.20 | 0.075 | −6.67 ± 10.18 | 8.00 ± 3.74 | 0.153 | 1.67 ± 7.27 | −5.00 ± 9.49 | 0.644 | −0.95 ± 0.92 | −1.71 ± 1.14 | 0.162 | |
ΔM3-1 | 8 | −9.33 ± 19.23 | 19.20 ± 5.85 | 0.126 | −7.78 ± 9.88 | 28.67 ± 9.35 | 0.045 * | −5.00 ± 13.23 | −17.00 ± 7.17 | 0.411 | −14.29 ± 17.22 | −5.14 ± 4.46 | 0.535 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juho, Y.-C.; Tang, S.-H.; Lin, Y.-H.; Lin, C.-X.; Liang, T.; Cherng, J.-H.; Meng, E. Germanium-Titanium-π Polymer Composites as Functional Textiles for Clinical Strategy to Evaluate Blood Circulation Improvement and Sexual Satisfaction. Polymers 2021, 13, 4154. https://doi.org/10.3390/polym13234154
Juho Y-C, Tang S-H, Lin Y-H, Lin C-X, Liang T, Cherng J-H, Meng E. Germanium-Titanium-π Polymer Composites as Functional Textiles for Clinical Strategy to Evaluate Blood Circulation Improvement and Sexual Satisfaction. Polymers. 2021; 13(23):4154. https://doi.org/10.3390/polym13234154
Chicago/Turabian StyleJuho, Yu-Cing, Shou-Hung Tang, Yi-Hsin Lin, Chen-Xi Lin, Tenson Liang, Juin-Hong Cherng, and En Meng. 2021. "Germanium-Titanium-π Polymer Composites as Functional Textiles for Clinical Strategy to Evaluate Blood Circulation Improvement and Sexual Satisfaction" Polymers 13, no. 23: 4154. https://doi.org/10.3390/polym13234154
APA StyleJuho, Y. -C., Tang, S. -H., Lin, Y. -H., Lin, C. -X., Liang, T., Cherng, J. -H., & Meng, E. (2021). Germanium-Titanium-π Polymer Composites as Functional Textiles for Clinical Strategy to Evaluate Blood Circulation Improvement and Sexual Satisfaction. Polymers, 13(23), 4154. https://doi.org/10.3390/polym13234154