Polymer-Based Bioactive Luting Agents for Cementation of All-Ceramic Crowns: An SEM, EDX, Microleakage, Fracture Strength, and Color Stability Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Analysis of Cements
2.2. Specimen Preparation
- Group 1: resin cement (Multilink N, Ivocalr Vivadent, Buffalo, NY, USA);
- Group 2: polymeric bioactive cement (ACTIVA polymeric bioactive cement, Pulpdent, Watertown, MA, USA);
- Group 3: polymeric bioactive cement (Ceramir C&B, Daxo dental, Uppsalla, Sweden).
- Group A: resin cement (Multilink N, Ivocalr Vivadent, Buffalo, NY, USA);
- Group B: polymeric bioactive cement (ACTIVA polymeric bioactive cement, Pulpdent, Watertown, MA, USA);
- Group C: polymeric bioactive cement (Ceramir C&B, Daxo dental, Uppsalla, Sweden).
2.3. Failure Load Testing
2.4. Microleakage Assessment
2.5. Staining Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samer, M.S.; Faraz, Q.; Al-Dubai, S.A.R.; Vohra, F.; Abdullah, H.; Taiyeb-Ali, T.B.; Saub, R. Clinical outcomes and predictors of satisfaction in patients with improved lithium disilicate all-ceramic crowns. Med. Princ. Pract. 2017, 26, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Mohanna, D.A.; Abduljabbar, T.; Al-Sowygh, Z.H.; Abu Hasan, M.I.; Ab Ghani, S.M.; Vohra, F. Influence of silicoating, etching and heated glaze treatment on the surface of Y-TZP and its impact on bonding with veneering ceramic. J. Adhes. Sci. Technol. 2018, 32, 1055–1065. [Google Scholar] [CrossRef]
- Donly, K.J.; Liu, J.A. Dentin and enamel demineralization inhibition at restoration margins of Vitremer, Z 100 and Cention N. Am. J. Dent. 2018, 31, 166–168. [Google Scholar]
- Rossetti, P.H.; Valle, A.L.; Carvalho, R.M.; Goes, M.F.; Pegoraro, L.F. Correlation between margin fit and microleakage in complete crowns cemented with three luting agents. J. Appl. Oral Sci. 2008, 16, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, N.; Wakabayashi, N. Finite element contact analysis as a critical technique in dental biomechanics: A review. J. Prosthodont. Res. 2014, 58, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.L.; Sarkis-Onofre, R.; Goncalves, A.P.; Fernandez, E.; Loomans, B.; Moraes, R.R. Repair bond strength of dental composites: Systematic review and meta-analysis. Int. J. Adhes. Adhes. 2016, 69, 15–26. [Google Scholar] [CrossRef]
- Alkhudhairy, F.; Al-Johany, S.S.; Naseem, M.; Bin-Shuwaish, M.; Vohra, F. Dentin bond strength of polymeric bioactive cement in comparison to conventional resin cement when photosensitized with Er, Cr: YSGG Laser. Pak. J. Med. Sci. 2020, 35, 85. [Google Scholar]
- Alkhudhairy, F.; Naseem, M.; Ahmad, Z.H.; Alnooh, A.N.; Vohra, F. Influence of photobio-modulation with an Er, Cr: YSGG laser on dentin adhesion bonded with bioactive and resin-modified glass ionomer cement. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019880691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, A.A.; Jaecques, S.; Van Ende, A.; Cardoso, M.V.; Coutinho, E.; Lührs, A.K.; Zicari, F.; Van Meerbeek, B. 3D-microleakage assessment of adhesive interfaces: Exploratory findings by μCT. Dent. Mater. 2014, 30, 799–807. [Google Scholar] [CrossRef]
- Hannig, M.; Hannig, C. Nanomaterials in preventive dentistry. Nat. Nanotechnol. 2010, 5, 565–569. [Google Scholar] [CrossRef]
- Skrtic, D.; Antonucci, J.M.; Eanes, E.D. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J. Res. Natl. Inst. Stand. Technol. 2003, 108, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Guided tissue remineralization of partially demineralized human dentin. Biomaterials 2008, 29, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Vohra, F.; Altwaim, M.; Alshuwaier, A.S.; Al Deeb, M.; Alfawaz, Y.; Alrabiah, M.; Abduljabbar, T. Influence of Bioactive, Resin and Glass Ionomer luting cements on the fracture loads of dentin bonded ceramic crowns. Pak. J. Med Sci. 2020, 36, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeshari, S.A. Micro-CT Assessment of the Sealing Ability of Bio-Ceramic Root Canal Sealers. Doctoral Dissertation, University of Leeds, Leeds, UK, 2020. [Google Scholar]
- El-Basha, E. Assessment of composite leakage using optical coherence tomography: A systematic review. Adv. Clin. Exp. Dent. 2020, 1, 19–32. [Google Scholar] [CrossRef]
- Awad, M.M.; Almutairi, N.; Alhalabi, F.; Robaian, A.; Vohra, F.A.; Ozcan, M.; Maawadh, A.; Alrahlah, A. Influence of surface conditioning on the repair strength of polymeric bioactive restorative material. J. Appl. Biomater. Funct. Mater. 2020, 18. [Google Scholar] [CrossRef]
- Opdam, N.J.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.D.N.J.M.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef]
- Amaral, F.L.; Colucci, V.; PALMA-DIBB, R.G.; Corona, S.A. Assessment of in vitro methods used to promote adhesive interface degradation: A critical review. J. Esthet. Restor. Dent. 2007, 19, 340–353. [Google Scholar] [CrossRef]
- Vohra, F.; Altwaim, M.; Alshuwaier, A.; Alomayri, A.; Al Deeb, M.; AlFawaz, Y.F.; Alrabiah, M.; Al Ahdal, K.; Al Deeb, L.; Abduljabbar, T. Bond integrity and microleakage of dentin-bonded crowns cemented with polymeric bioactive cement in comparison to resin cements: In vitro study. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020905768. [Google Scholar] [CrossRef]
- Bin-Shuwaish, M.S.; Maawadh, A.M.; Al-Hamdan, R.S.; Alresayes, S.; Ali, T.; Almutairi, B.; Abduljabbar, T. Influence of graphene oxide filler content on the dentin bond integrity, degree of conversion and bond strength of experimental adhesive. A SEM, micro-raman, FTIR and microtensile study. Mater. Res. Express 2020, 7, 115403. [Google Scholar] [CrossRef]
- Vohra, F.; Alnajashi, S.; Aljardi, A.; Al Deeb, M.; Al Deeb, L.; Al Ahdal, K.; Abduljabbar, T. Color Masking Ability of Lithium Disilicate Ceramic for Titanium Alloy Implant Abutments. J. Biomater. Tissue Eng. 2020, 10, 852–857. [Google Scholar] [CrossRef]
- Vohra, F.; Labban, N.; Al-Hussaini, A.; Al-Jarboua, M.; Zawawi, R.; Alrahlah, A.; Naseem, M. Influence of Er; Cr: YSGG laser on shear bond strength and color stability of lithium disilicate ceramics: An in vitro study. Photobiomodulation Photomed. Laser Surg. 2019, 37, 483–488. [Google Scholar] [CrossRef]
- Jefferies, S.R.; Fuller, A.E. Boston DW. Preliminary evidence that polymeric bioactive cements occlude artificial marginal gaps. J. Esthet. Restor. Dent. 2015, 27, 155–166. [Google Scholar] [CrossRef]
- Zhang, J.; Park, Y.D.; Bae, W.J.; El-Fiqi, A.; Shin, S.H.; Lee, E.J.; Kim, H.W.; Kim, E.C. Effects of polymeric bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells. J. Biomater. Appl. 2015, 29, 954–964. [Google Scholar] [CrossRef]
- Sonarkar, S.; Purba, R. Polymeric bioactive materials in conservative dentistry. Int. J. Contemp. Dent. Med. Rev. 2015, 2015, 1–4. [Google Scholar]
- Bertassoni, L.E.; Habelitz, S.; Marshall, S.J.; Marshall, G.W. Mechanical recovery of dentin following remineralization in vitro- an indentation study. J. Biomech. 2011, 44, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, L.; Liu, Y.; Salameh, Z.; Khan, S.; Mao, J.; Pashley, D.H.; Tay, F.R. Can caries-affected dentin be completely remineralized by guided tissue remineralization? Dent. Hypotheses 2011, 2, 74–82. [Google Scholar] [PubMed]
- Taylor, M.J.; Lynch, E. Microleakage. J. Dent. 1992, 20, 3–10. [Google Scholar] [CrossRef]
- Heintze, S.D. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dent. Mater. 2013, 29, 59–84. [Google Scholar] [CrossRef]
- Mollica, F.; De Santis, R.; Ambrosio, L.; Nicolais, L.; Prisco, D.; Rengo, S. Mechanical and leakage behaviour of the dentin–adhesive interface. J. Mater. Sci. Mater. Med. 2004, 15, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Pameijer, C.H. A review of luting agents. Int. J. Dent. 2012, 2012, 752861. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Ashizawa, M.; Nakamura, M. Identification of a resin-dentin hybrid layer in vital human dentin created in vivo: Durable bonding to vital dentin. Quintessence Int. 1992, 23, 135–141. [Google Scholar] [PubMed]
- Alkhudhairy, F.; Vohra, F.; Naseem, M.; Ahmad, Z.H. Adhesive bond integrity of dentin conditioned by photobiomodulation and bonded to bioactive restorative material. Photodiagnosis Photodyn. Ther. 2019, 28, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, S.R.; Appleby, D.; Boston, D.; Pameijer, C.H.; Lööf, J. Clinical performance of a polymeric bioactive dental luting cement--a prospective clinical pilot study. J. Clin. Dent. 2009, 20, 231–237. [Google Scholar]
- Dekow, M.W. Effects of Silanation of Ceramic Crowns on Bond Strength Using a New Polymeric Bioactive Cement; Uniformed Services Univ of the Health Sciences Bethesda: Bethesda, MD, USA, 2017. [Google Scholar]
- Hashimoto, M.; Ohno, H.; Endo, K.; Kaga, M.; Sano, H.; Oguchi, H. The effect of hybrid layer thickness on bond strength: Demineralized dentin zone of the hybrid layer. Dent. Mater. 2000, 16, 406–411. [Google Scholar] [CrossRef]
- Nijhawan, C.; Jasuja, P.; Sharma, A.; Khurana, H.; Gakhar, E. Comparative evaluation of shear bond strength of a traditional composite and ACTIVA Polymeric bioactive after enamel preparation with Er: YAG laser and conventional acid etching: An in vitro study. J. Dent. Lasers 2019, 13, 44. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
Type of Cement | Mean (MPa) | SD | Maximum | Minimum | p Value * |
---|---|---|---|---|---|
Group 1-Resin | 49.5 A | 8.85 | 58.0 | 41.72 | <0.01 |
Group 2-ACTIVA | 48.7 A | 6.59 | 54.6 | 41.7 | |
Group 3-Ceramir | 39.8 B | 9.16 | 50.07 | 29.42 |
Type of Cement | Mean & SD | p Value * |
---|---|---|
Group 1-resin | 0.70 ± 0.75 A | 0.00098 |
Group 2-ACTIVA | 0.61 ± 0.56 A | |
Group 3-Ceramir C&B | 2.563 ± 0.71 B |
Study Groups | Mean & SD | p Value * |
---|---|---|
Group A-resin | 11.43 ± 3.54 A | 0.0021 |
Group B-ACTIVA | 5.79 ± 6.24 B | |
Group C-Ceramir C&B | 18.84 ± 5.42 C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saleh, S.; Aboghosh, T.W.; Hazazi, M.S.; Binsaeed, K.A.; Almuhaisen, A.M.; Tulbah, H.I.; Al-Qahtani, A.S.; Shabib, S.; Binhasan, M.; Vohra, F.; et al. Polymer-Based Bioactive Luting Agents for Cementation of All-Ceramic Crowns: An SEM, EDX, Microleakage, Fracture Strength, and Color Stability Study. Polymers 2021, 13, 4227. https://doi.org/10.3390/polym13234227
Al-Saleh S, Aboghosh TW, Hazazi MS, Binsaeed KA, Almuhaisen AM, Tulbah HI, Al-Qahtani AS, Shabib S, Binhasan M, Vohra F, et al. Polymer-Based Bioactive Luting Agents for Cementation of All-Ceramic Crowns: An SEM, EDX, Microleakage, Fracture Strength, and Color Stability Study. Polymers. 2021; 13(23):4227. https://doi.org/10.3390/polym13234227
Chicago/Turabian StyleAl-Saleh, Samer, Turki W. Aboghosh, Mousa S. Hazazi, Khalid A. Binsaeed, Abdulaziz M. Almuhaisen, Huda I. Tulbah, Amal S. Al-Qahtani, Sara Shabib, Mashael Binhasan, Fahim Vohra, and et al. 2021. "Polymer-Based Bioactive Luting Agents for Cementation of All-Ceramic Crowns: An SEM, EDX, Microleakage, Fracture Strength, and Color Stability Study" Polymers 13, no. 23: 4227. https://doi.org/10.3390/polym13234227
APA StyleAl-Saleh, S., Aboghosh, T. W., Hazazi, M. S., Binsaeed, K. A., Almuhaisen, A. M., Tulbah, H. I., Al-Qahtani, A. S., Shabib, S., Binhasan, M., Vohra, F., & Abduljabbar, T. (2021). Polymer-Based Bioactive Luting Agents for Cementation of All-Ceramic Crowns: An SEM, EDX, Microleakage, Fracture Strength, and Color Stability Study. Polymers, 13(23), 4227. https://doi.org/10.3390/polym13234227