Influence of Compression Molding Process Parameters in Mechanical and Tribological Behavior of Hybrid Polymer Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Procedure
4. Results and Discussion
4.1. Fatigue Life Analysis
4.2. Impact Strength Analysis
4.3. Wear Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, J.F.; Ferreira, D.P.; Bessa, J.; Matos, J.; Cunha, F.; Araújo, I.; Silva, L.F.; Pinho, E.; Fangueiro, R. Mechanical performance of thermoplastic olefin composites reinforced with coir and sisal natural fibers: Influence of surface pretreatment. Polym. Compos. 2019, 40, 3472–3481. [Google Scholar] [CrossRef]
- Daniel-Mkpume, C.; Ugochukwu, C.; Okonkwo, E.; Fayomi, O.; Obiorah, S. Effect of Luffa cylindrica fiber and particulate on the mechanical properties of epoxy. Int. J. Adv. Manuf. Technol. 2019, 102, 3439–3444. [Google Scholar] [CrossRef]
- Lakshumu Naidu, A.; Kona, S. Experimental study of the mechanical properties of banana fiber and groundnut shell ash reinforced epoxy hybrid composite. Int. J. Eng. 2018, 31, 659–665. [Google Scholar] [CrossRef]
- Hsissou, R.; Berradi, M.; El Bouchti, M.; El Bachiri, A.; Elharfi, A. Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN). Polym. Bull. 2018, 76, 4859–4878. [Google Scholar] [CrossRef]
- Bisen, H.B.; Hirwani, C.K.; Satankar, R.K.; Panda, S.K.; Mehar, K.; Patel, B. Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation. J. Nat. Fibers 2020, 17, 505–519. [Google Scholar] [CrossRef]
- Onifade, D.V.; Ighalo, J.O.; Adeniyi, A.G.; Hameed, K. Morphological and thermal properties of polystyrene composite reinforced with biochar from plantain stalk fibre. Mater. Int. 2020, 2, 150–156. [Google Scholar]
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Salit, M.S. Effects of surface treatments on tensile, thermal and fibre-matrix bond strength of coir and pineapple leaf fibres with poly lactic acid. J. Bionic Eng. 2018, 15, 1035–1046. [Google Scholar] [CrossRef]
- Bekhta, A.; Hsissou, R.; Elharfi, A. Evaluation of mechanical compressive strength of cementitious matrix with 12% of IER formulated by modified polymer (NEPS) at different percentages. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Ahmad, B.; Ashfaq, M.; Joy, A.; Carlos, Z.A.; Sudheer, M. Fabrication and characterization of an eco-friendly biodegradable epoxy/chitosan composites. Am. J. Mater. Sci. 2017, 7, 166–169. [Google Scholar] [CrossRef]
- Zin, M.H.; Abdan, K.; Norizan, M.N. The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–17. ISBN 978-0-08-102291-7. [Google Scholar]
- Böhm, M.; Głowacka, K. Fatigue Life Estimation with Mean Stress Effect Compensation for Lightweight Structures—The Case of GLARE 2 Composite. Polymers 2020, 12, 251. [Google Scholar] [CrossRef] [Green Version]
- Osiecki, T.; Gerstenberger, C.; Hackert, A.; Timmel, T.; Kroll, L. High-Performance Fiber Reinforced Polymer/Metal-Hybrids for Structural Lightweight Design. Key Eng. Mater. 2017, 744, 311–316. [Google Scholar] [CrossRef]
- Oksiuta, Z.; Jalbrzykowski, M.; Mystkowska, J.; Romanczuk, E.; Osiecki, T. Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers 2020, 12, 2939. [Google Scholar] [CrossRef]
- Sukudom, N.; Jariyasakoolroj, P.; Jarupan, L.; Tansin, K. Mechanical, thermal, and biodegradation behaviors of poly(vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. J. Mater. Cycles Waste Manag. 2019, 21, 125–133. [Google Scholar] [CrossRef]
- De Paiva, F.F.G.; de Maria, V.P.K.; Torres, G.B.; Dognani, G.; Dos Santos, R.J.; Cabrera, F.C.; Job, A.E. Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J. Mater. Cycles Waste Manag. 2018, 21, 326–335. [Google Scholar] [CrossRef]
- Aslan, M.; Tufan, M.; Kucukomeroglu, T. Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites. Compos. Part B Eng. 2018, 140, 241–249. [Google Scholar] [CrossRef]
- Lascano, D.; Quiles-Carrillo, L.; Torres-Giner, S.; Boronat, T.; Montanes, N. Optimization of the curing and post-curing conditions for the manufacturing of partially bio-based epoxy resins with improved toughness. Polymers 2019, 11, 1354. [Google Scholar] [CrossRef] [Green Version]
- Somashekhar, S.; Shanthakumar, G.C.; Nagamadhu, M. Influence of fiber content and screw speed on the mechanical characterization of jute fiber reinforced polypropylene composite using Taguchi method. Mater. Today Proc. 2020, 24, 2366–2374. [Google Scholar] [CrossRef]
- Saccani, A.; Manzi, S.; Lancellotti, I.; Lipparini, L. Composites obtained by recycling carbon fibre/epoxy composite wastes in building materials. Constr. Build. Mater. 2019, 204, 296–302. [Google Scholar] [CrossRef]
- Sumesh, K.R.; Kavimani, V.; Rajeshkumar, G.; Ravikumar, P.; Indran, S. An Investigation into the mechanical and wear characteristics of hybrid composites: Influence of different types and content of biodegradable reinforcements. J. Nat. Fibers 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Todkar, S.S.; Patil, S.A. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos. Part B Eng. 2019, 174, 106927. [Google Scholar] [CrossRef]
- Sumesh, K.R.; Kanthavel, K. Grey relational optimization for factors influencing tensile, flexural, and impact properties of hybrid sisal banana fiber epoxy composites. J. Ind. Text. 2020. [Google Scholar] [CrossRef]
- Dhanola, A.; Bisht, A.S.; Kumar, A.; Kumar, A. Influence of natural fillers on physico-mechanical properties of Luffa cylindrica/polyester composites. Mater. Today Proc. 2018, 5, 17021–17029. [Google Scholar] [CrossRef]
- Dinesh, T.; Kadirvel, A.; Hariharan, P. Thermo-mechanical and wear behaviour of surface-treated pineapple woven fibre and nano-silica dispersed mahua oil toughened epoxy composite. Silicon 2020, 12, 2911–2920. [Google Scholar] [CrossRef]
- Sathish, T. Nano-Alumina Reinforcement on AA 8079 acquired from Waste Aluminium Food Containers for altering Microhardness and Wear resistance. J. Mater. Res. Technol. 2021, 21, 1494–1503. [Google Scholar] [CrossRef]
- Krishnan, G.S.; Velmurugan, P. Investigation on the characteristics of bamboo/jute reinforced hybrid epoxy polymer composites. Mater. Res. Express 2019, 6, 105346. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Abdulkareem, S.A.; Ighalo, J.O.; Onifade, D.V.; Adeoye, S.A.; Sampson, A.E. Morphological and thermal properties of polystyrene composite reinforced with biochar from elephant grass (Pennisetum purpureum). J. Thermoplast. Compos. Mater. 2020. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Meenakshisundaram, O.; Elumalai, V.; Boopathy, R.S. An investigation on the interfacial adhesion between amine functionalized luffa fiber and epoxy resin and its effect on thermal and mechanical properties of their composites. J. Nat. Fibers 2020, 18, 2254–2269. [Google Scholar] [CrossRef]
- Merizgui, T.; Hadjadj, A.; Kious, M.; Prakash, V.R.A. Effect of temperature and frequency on microwave shielding behaviour of functionalized kenaf fibre-reinforced MWCNTs/Iron(III) oxide modified epoxy hybrid composite. Trans. Electr. Electron. Mater. 2020, 21, 366–376. [Google Scholar] [CrossRef]
- Mortazavian, V.; Fatemi, A. Effects of mean stress and stress concentration on fatigue behavior of short fiber reinforced polymer composites. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 149–166. [Google Scholar] [CrossRef]
- Habibi, M.; Selmi, S.; Laperrière, L.; Mahi, H.; Kelouwani, S. Experimental investigation on the response of unidirectional flax fiber composites to low-velocity impact with after-impact tensile and compressive strength measurement. Compos. B Eng. 2019, 171, 246–253. [Google Scholar] [CrossRef]
- Sinha, A.K.; Bhattacharya, S.; Narang, H.K. Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polym. Polym. Compos. 2019, 27, 597–608. [Google Scholar] [CrossRef]
- Liu, W.; Hui, C.; Wang, F.; Wang, M.; Liu, G. Review of the resources and utilization of bamboo in China. In Bamboo—Current and Future Prospects; Abdul Khalil, H.P.S., Ed.; IntechOpen Limited: London, UK, 2018; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Najeeb, M.I.; Sultan, M.T.H.; Andou, Y.; Shah, A.U.M.; Eksiler, K.; Jawaid, M.; Ariffin, A.H. Characterization of lignocellulosic biomass from Malaysian’s Yankee pineapple AC6 toward composite application. J. Nat. Fibers 2020, 18, 2006–2018. [Google Scholar] [CrossRef]
- Sy, B.L.; Fawaz, Z.; Bougherara, H. Damage evolution in unidirectional and cross-ply flax/epoxy laminates subjected to low velocity impact loading. Compos. Part A Appl. Sci. Manuf. 2018, 112, 452–467. [Google Scholar] [CrossRef]
- Soundhar, A.; Rajesh, M.; Jayakrishna, K.; Sultan, M.T.H.; Shah, A.U.M. Investigation on mechanical properties of polyurethane hybrid nanocomposite foams reinforced with roselle fibers and silica nanoparticles. Nanocomposites 2019, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Saba, N.; Alothman, O.Y.; Almutairi, Z.; Jawaid, M. Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: Mechanical and thermomechanical properties. Constr. Build. Mater. 2019, 201, 138–148. [Google Scholar] [CrossRef]
- Rahman, R.; Hamdan, S.; Jayamani, E.; Kakar, A.; Bakri, M.K.B.; Yusof, F.A.B.M. Tert-butyl catechol/alkaline-treated kenaf/jute polyethylene hybrid composites: Impact on physico-mechanical, thermal and morphological properties. Polym. Bull. 2019, 76, 763–784. [Google Scholar] [CrossRef]
S. No | Parameters | Level 1 | Level 2 | Level 3 | Levels 4 |
---|---|---|---|---|---|
1. | % of reinforcement | 20 | 30 | 40 | 50 |
2. | Molding temperature (°C) | 150 | 160 | 170 | 180 |
3. | Molding pressure (MPa) | 1 | 2 | 3 | 4 |
4. | Curing time (min) | 20 | 25 | 30 | 35 |
Exp.Runs | % of Reinforcement | Molding Temperature (°C) | Molding Pressure (MPa) | Curing Time (min) | Fatigue Life (Nf) | Impact (kJ/m2) | Wear (µm) |
---|---|---|---|---|---|---|---|
1 | 20 | 150 | 1 | 20 | 3057 | 17.39 | 31 |
2 | 20 | 160 | 2 | 25 | 4319 | 21.71 | 40 |
3 | 20 | 170 | 3 | 30 | 6321 | 23.83 | 42 |
4 | 20 | 180 | 4 | 35 | 5347 | 31.73 | 48 |
5 | 30 | 150 | 2 | 30 | 4328 | 22.62 | 41 |
6 | 30 | 160 | 1 | 35 | 5945 | 28.93 | 47 |
7 | 30 | 170 | 4 | 20 | 4128 | 19.21 | 37 |
8 | 30 | 180 | 3 | 25 | 6875 | 27.43 | 45 |
9 | 40 | 150 | 3 | 35 | 7123 | 30.03 | 43 |
10 | 40 | 160 | 4 | 30 | 6851 | 29.15 | 47 |
11 | 40 | 170 | 1 | 25 | 5398 | 24.27 | 42 |
12 | 40 | 180 | 2 | 20 | 7125 | 21.36 | 39 |
13 | 50 | 150 | 4 | 25 | 7648 | 27.52 | 46 |
14 | 50 | 160 | 3 | 20 | 5984 | 20.30 | 38 |
15 | 50 | 170 | 2 | 35 | 7328 | 33.13 | 51 |
16 | 50 | 180 | 1 | 30 | 6258 | 28.73 | 47 |
Level | % of Reinforcement | Molding Temperature (°C) | Molding Pressure (MPa) | Curing Time (min) |
---|---|---|---|---|
1 | 4761 | 5539 | 5165 | 5074 |
2 | 5319 | 5775 | 5775 | 6060 |
3 | 6624 | 5794 | 6576 | 5940 |
4 | 6805 | 6401 | 5994 | 6436 |
Delta | 2044 | 862 | 1411 | 1362 |
Rank | 1 | 4 | 2 | 3 |
Level | % of Reinforcement | Molding Temperature (°C) | Molding Pressure (MPa) | Curing Time (min) |
---|---|---|---|---|
1 | 73.25 | 74.29 | 73.94 | 73.65 |
2 | 74.32 | 75.11 | 74.95 | 75.44 |
3 | 76.37 | 75.07 | 76.34 | 75.35 |
4 | 76.61 | 76.07 | 75.32 | 76.10 |
Delta | 3.36 | 1.78 | 2.40 | 2.45 |
Rank | 1 | 4 | 3 | 2 |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Regression | 4 | 17,724,150 | 65.64% | 17,724,150 | 4,431,038 | 5.25 | 0.013 |
% of reinforcement | 1 | 11,058,076 | 40.95% | 11,058,076 | 11,058,076 | 13.11 | 0.004 |
Molding temperature (°C) | 1 | 1,357,987 | 5.03% | 1,357,987 | 1,357,987 | 1.61 | 0.231 |
Molding pressure (MPa) | 1 | 2,161,860 | 8.01% | 2,161,860 | 2,161,860 | 2.56 | 0.138 |
Curing time (min) | 1 | 3,146,228 | 11.65% | 3,146,228 | 3,146,228 | 3.73 | 0.080 |
Error | 11 | 9,279,268 | 34.36% | 9,279,268 | 843,570 | ||
Total | 15 | 27,003,418 | 100.00% |
Level | % of Reinforcement | Molding Temperature (°C) | Molding Pressure (MPa) | Curing Time (min) |
---|---|---|---|---|
1 | 23.66 | 24.39 | 24.83 | 19.56 |
2 | 24.55 | 25.02 | 24.70 | 25.23 |
3 | 26.20 | 25.11 | 25.40 | 26.08 |
4 | 27.42 | 27.31 | 26.90 | 30.95 |
Delta | 3.76 | 2.92 | 2.20 | 11.39 |
Rank | 2 | 3 | 4 | 1 |
Level | % of Reinforcement | Molding Temperature (°C) | Molding Pressure (MPa) | Curing Time (min) |
---|---|---|---|---|
1 | 27.28 | 27.56 | 27.73 | 25.80 |
2 | 27.69 | 27.85 | 27.70 | 28.00 |
3 | 28.28 | 27.83 | 28.00 | 28.27 |
4 | 28.63 | 28.64 | 28.45 | 29.80 |
Delta | 1.35 | 1.08 | 0.74 | 4.00 |
Rank | 2 | 3 | 4 | 1 |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Regression | 4 | 303.897 | 90.09% | 303.897 | 75.974 | 25.00 | 0.000 |
% of reinforcement | 1 | 33.385 | 9.90% | 33.385 | 33.385 | 10.99 | 0.007 |
Molding temperature (°C) | 1 | 15.682 | 4.65% | 15.682 | 15.682 | 5.16 | 0.044 |
Molding pressure (MPa) | 1 | 9.550 | 2.83% | 9.550 | 9.550 | 3.14 | 0.104 |
Curing time (min) | 1 | 245.280 | 72.71% | 245.280 | 245.280 | 80.71 | 0.000 |
Error | 11 | 33.428 | 9.91% | 33.428 | 3.039 | - | - |
Total | 15 | 337.325 | 100.00% | - | - | - | - |
Level | % of Reinforcement | Molding Temperature (°C) | Molding Pressure (MPa) | Curing Time (min) |
---|---|---|---|---|
1 | 40.08 | 39.98 | 41.68 | 36.42 |
2 | 42.56 | 43.03 | 42.71 | 43.24 |
3 | 42.95 | 43.12 | 42.15 | 44.09 |
4 | 45.43 | 44.89 | 44.48 | 47.27 |
Delta | 5.34 | 4.90 | 2.79 | 10.85 |
Rank | 2 | 3 | 4 | 1 |
Level | % of Reinforcement | Molding Temperature (°C) | Molding Pressure (MPa) | Curing Time (min) |
---|---|---|---|---|
1 | −31.95 | −31.94 | −32.28 | −31.19 |
2 | −32.54 | −32.64 | −32.56 | −32.70 |
3 | −32.64 | −32.64 | −32.48 | −32.87 |
4 | −33.10 | −33.02 | −32.92 | −33.47 |
Delta | 1.15 | 1.07 | 0.64 | 2.29 |
Rank | 2 | 3 | 4 | 1 |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Regression | 4 | 333.13 | 86.38% | 333.13 | 83.281 | 17.44 | 0.000 |
% of reinforcement | 1 | 53.98 | 14.00% | 53.98 | 53.981 | 11.30 | 0.006 |
Molding temperature (°C) | 1 | 43.78 | 11.35% | 43.78 | 43.778 | 9.17 | 0.011 |
Molding pressure (MPa) | 1 | 12.21 | 3.17% | 12.21 | 12.207 | 2.56 | 0.138 |
Curing time (min) | 1 | 223.16 | 57.86% | 223.16 | 223.159 | 46.73 | 0.000 |
Error | 11 | 52.53 | 13.62% | 52.53 | 4.775 | ||
Total | 15 | 385.66 | 100.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathish, T.; Mohanavel, V.; Raja, T.; Djearamane, S.; Velmurugan, P.; Nasif, O.; Alfarraj, S.; Wong, L.S.; Manikandan, V.; Ravichandran, M. Influence of Compression Molding Process Parameters in Mechanical and Tribological Behavior of Hybrid Polymer Matrix Composites. Polymers 2021, 13, 4195. https://doi.org/10.3390/polym13234195
Sathish T, Mohanavel V, Raja T, Djearamane S, Velmurugan P, Nasif O, Alfarraj S, Wong LS, Manikandan V, Ravichandran M. Influence of Compression Molding Process Parameters in Mechanical and Tribological Behavior of Hybrid Polymer Matrix Composites. Polymers. 2021; 13(23):4195. https://doi.org/10.3390/polym13234195
Chicago/Turabian StyleSathish, Thanikodi, Vinayagam Mohanavel, Thandavamoorthy Raja, Sinouvassane Djearamane, Palanivel Velmurugan, Omaima Nasif, Saleh Alfarraj, Ling Shing Wong, Velu Manikandan, and Manikkam Ravichandran. 2021. "Influence of Compression Molding Process Parameters in Mechanical and Tribological Behavior of Hybrid Polymer Matrix Composites" Polymers 13, no. 23: 4195. https://doi.org/10.3390/polym13234195
APA StyleSathish, T., Mohanavel, V., Raja, T., Djearamane, S., Velmurugan, P., Nasif, O., Alfarraj, S., Wong, L. S., Manikandan, V., & Ravichandran, M. (2021). Influence of Compression Molding Process Parameters in Mechanical and Tribological Behavior of Hybrid Polymer Matrix Composites. Polymers, 13(23), 4195. https://doi.org/10.3390/polym13234195