Morphology and Degradation of Multicompartment Microparticles Based on Semi-Crystalline Polystyrene-block-Polybutadiene-block-Poly(L-lactide) Triblock Terpolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of SB-OH Precursors
2.2. Synthesis of SBL Triblock Terpolymers
2.3. Preparation of SBL Bulk Films
2.4. Preparation of SBL Microparticles
2.5. Degradation of SBL Microparticles
2.6. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.7. Size-Exclusion Chromatography (SEC)
2.8. Differential Scanning Calorimetry (DSC)
2.9. Transmission Electron Microscopy (TEM)
2.10. Scanning Electron Microscopy (SEM)
2.11. Ultra-Sectioning of SBL Microparticles
2.12. Raman Spectroscopy
2.13. Dynamic Light Scattering (DLS)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stefik, M.; Guldin, S.; Vignolini, S.; Wiesner, U.; Steiner, U. Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev. 2015, 44, 5076–5091. [Google Scholar] [CrossRef] [Green Version]
- Bojer, C.; Ament, K.; Schmalz, H.; Breu, J.; Lunkenbein, T. Electrostatic attraction of nanoobjects-A versatile strategy towards mesostructured transition metal compounds. CrystEngComm 2019, 21, 4840–4850. [Google Scholar] [CrossRef]
- Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef]
- Karayianni, M.; Pispas, S. Block copolymer solution self-assembly: Recent advances, emerging trends, and applications. J. Polym. Sci. 2021, 59, 1874–1898. [Google Scholar] [CrossRef]
- Ganda, S.; Stenzel, M.H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 2020, 101, 101195. [Google Scholar] [CrossRef]
- MacFarlane, L.; Zhao, C.; Cai, J.; Qiu, H.; Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 2021, 12, 4661–4682. [Google Scholar] [CrossRef]
- Hils, C.; Manners, I.; Schöbel, J.; Schmalz, H. Patchy micelles with a crystalline core: Self-assembly concepts, properties, and applications. Polymers 2021, 13, 1481. [Google Scholar] [CrossRef]
- Gröschel, A.H.; Walther, A.; Löbling, T.I.; Schacher, F.H.; Schmalz, H.; Müller, A.H.E. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 2013, 503, 247–251. [Google Scholar] [CrossRef]
- Lunn, D.J.; Finnegan, J.R.; Manners, I. Self-assembly of “patchy” nanoparticles: A versatile approach to functional hierarchical materials. Chem. Sci. 2015, 6, 3663–3673. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.G.; Audus, D.J.; Klinger, D.; Krogstad, D.V.; Kim, B.J.; Cameron, A.; Kim, S.W.; Delaney, K.T.; Hur, S.M.; Killops, K.L.; et al. Striped, ellipsoidal particles by controlled assembly of diblock copolymers. J. Am. Chem. Soc. 2013, 135, 6649–6657. [Google Scholar] [CrossRef]
- Steinhaus, A.; Pelras, T.; Chakroun, R.; Gröschel, A.H.; Müllner, M. Self-assembly of diblock molecular polymer brushes in the spherical confinement of nanoemulsion droplets. Macromol. Rapid Commun. 2018, 39, 1800177. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ku, K.H.; Vijayamohanan, H.; Kim, B.J.; Swager, T.M. Switchable full-color reflective photonic ellipsoidal particles. J. Am. Chem. Soc. 2020, 142, 10424–10430. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Kim, Y.; Yun, H.; Yi, G.R.; Kim, B.J. Morphological evolution of block copolymer particles: Effect of solvent evaporation rate on particle shape and morphology. ACS Nano 2017, 11, 2133–2142. [Google Scholar] [CrossRef]
- Ku, K.H.; Lee, Y.J.; Kim, Y.; Kim, B.J. Shape-anisotropic diblock copolymer particles from evaporative emulsions: Experiment and theory. Macromolecules 2019, 52, 1150–1157. [Google Scholar] [CrossRef]
- Jeon, S.J.; Yi, G.R.; Yang, S.M. Cooperative assembly of block copolymers with deformable interfaces: Toward nanostructured particles. Adv. Mater. 2008, 20, 4103–4108. [Google Scholar] [CrossRef]
- Ku, K.H.; Yang, H.; Shin, J.M.; Kim, B.J. Aspect ratio effect of nanorod surfactants on the shape and internal morphology of block copolymer particles. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 188–192. [Google Scholar] [CrossRef]
- Ku, K.H.; Shin, J.M.; Kim, M.P.; Lee, C.H.; Seo, M.K.; Yi, G.R.; Jang, S.G.; Kim, B.J. Size-controlled nanoparticle-guided assembly of block copolymers for convex lens-shaped particles. J. Am. Chem. Soc. 2014, 136, 9982–9989. [Google Scholar] [CrossRef]
- Shin, J.M.; Kim, M.P.; Yang, H.; Ku, K.H.; Jang, S.G.; Youm, K.H.; Yi, G.R.; Kim, B.J. Monodipserse nanostructured spheres of block copolymers and nanoparticles via cross-flow membrane emulsification. Chem. Mater. 2015, 27, 6314–6321. [Google Scholar] [CrossRef]
- Ku, K.H.; Kim, M.P.; Paek, K.; Shin, J.M.; Chung, S.; Jang, S.G.; Chae, W.S.; Yi, G.R.; Kim, B.J. Multicolor emission of hybrid block copolymer-quantum dot microspheres by controlled spatial isolation of quantum dots. Small 2013, 9, 2667–2672. [Google Scholar] [CrossRef]
- Yan, N.; Liu, X.; Zhu, J.; Zhu, Y.; Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638–6646. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ku, K.H.; Kim, J.; Lee, Y.J.; Jang, S.G.; Kim, B.J. Light-responsive, shape-switchable block copolymer particles. J. Am. Chem. Soc. 2019, 141, 15348–15355. [Google Scholar] [CrossRef]
- Lee, J.; Ku, K.H.; Kim, M.; Shin, J.M.; Han, J.; Park, C.H.; Yi, G.-R.; Jang, S.G.; Kim, B.J. Stimuli-responsive, shape-transforming nanostructured particles. Adv. Mater. 2017, 29, 1700608. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Ren, M.; Wang, K.; Yang, Y.; Xu, J.; Zhu, J. Deformable block copolymer microparticles by controllable localization of pH-responsive nanoparticles. Macromolecules 2020, 53, 473–481. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y.; Wang, K.; Li, J.; Zhou, H.; Xie, X.; Zhu, J. Additives induced structural transformation of ABC triblock copolymer particles. Langmuir 2015, 31, 10975–10982. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, K.; Li, J.; Zhou, H.; Xie, X.; Zhu, J. ABC triblock copolymer particles with tunable shape and internal structure through 3D confined assembly. Macromolecules 2015, 48, 2628–2636. [Google Scholar] [CrossRef]
- Qiang, X.; Franzka, S.; Dai, X.; Gröschel, A.H. Multicompartment microparticles of SBT triblock terpolymers through 3D confinement assembly. Macromolecules 2020, 53, 4224–4233. [Google Scholar] [CrossRef]
- Dai, X.; Qiang, X.; Hils, C.; Schmalz, H.; Gröschel, A.H. Frustrated microparticle morphologies of a semicrystalline triblock terpolymer in 3D soft confinement. ACS Nano 2021, 15, 1111–1120. [Google Scholar] [CrossRef]
- Abetz, V.; Boschetti-de-Fierro, A. Block Copolymers in the Condensed State; Elsevier, B.V.: Amsterdam, The Netherlands, 2012; Volume 7, ISBN 9780080878621. [Google Scholar]
- Qiang, X.; Chakroun, R.; Janoszka, N.; Gröschel, A.H. Self-assembly of multiblock copolymers. Isr. J. Chem. 2019, 59, 945–958. [Google Scholar] [CrossRef]
- Wong, C.K.; Qiang, X.; Müller, A.H.E.; Gröschel, A.H. Self-assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 2020, 102, 101211. [Google Scholar] [CrossRef]
- Steinhaus, A.; Chakroun, R.; Müllner, M.; Nghiem, T.L.; Hildebrandt, M.; Gröschel, A.H. Confinement assembly of ABC triblock terpolymers for the high-yield synthesis of Janus nanorings. ACS Nano 2019, 13, 6269–6278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiang, X.; Steinhaus, A.; Chen, C.; Chakroun, R.; Gröschel, A.H. Template-free synthesis and selective filling of Janus nanocups. Angew. Chem. Int. Ed. 2019, 58, 7122–7126. [Google Scholar] [CrossRef]
- Steinhaus, A.; Srivastva, D.; Qiang, X.; Franzka, S.; Nikoubashman, A.; Gröschel, A.H. Controlling Janus nanodisc topology through ABC triblock terpolymer/homopolymer blending in 3D confinement. Macromolecules 2021, 54, 1224–1233. [Google Scholar] [CrossRef]
- Deng, R.; Liu, S.; Li, J.; Liao, Y.; Tao, J.; Zhu, J. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater. 2012, 24, 1889–1893. [Google Scholar] [CrossRef]
- Quintieri, G.; Saccone, M.; Spengler, M.; Giese, M.; Gröschel, A.H. Supramolecular modification of ABC triblock terpolymers in confinement assembly. Nanomaterials 2018, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Ren, M.; Wang, H.; Wang, H.; Geng, Z.; Xu, J.; Deng, R.; Chen, S.; Binder, W.H.; Zhu, J. Halogen-bond mediated 3D confined assembly of AB diblock copolymer and homopolymer blends. Small 2021, 17, 2007570. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Wölper, C.; Tjaberings, A.; Gröschel, A.H.; Schulz, S. Syntheses, structures and catalytic activity of tetranuclear Mg complexes in the ROP of cyclic esters under industrially relevant conditions. Dalt. Trans. 2020, 49, 375–387. [Google Scholar] [CrossRef]
- Ghosh, S.; Huse, K.; Wölper, C.; Tjaberings, A.; Gröschel, A.H.; Schulz, S. Fluorinated β-ketoiminate zinc complexes: Synthesis, structure and catalytic activity in ring opening polymerization of Lactide. Z. Für Anorg. Allg. Chem. 2021, 647, 1744–1750. [Google Scholar] [CrossRef]
- Ghosh, S.; Schäfer, P.M.; Dittrich, D.; Scheiper, C.; Steiniger, P.; Fink, G.; Ksiazkiewicz, A.N.; Tjaberings, A.; Wölper, C.; Gröschel, A.H.; et al. Heterolepic β-ketoiminate zinc phenoxide complexes as efficient catalysts for the ring opening polymerization of lactide. ChemistryOpen 2019, 8, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346. [Google Scholar] [CrossRef]
- Ahmed, F.; Discher, D.E. Self-porating polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-triggered controlled release vesicles. J. Control. Release 2004, 96, 37–53. [Google Scholar] [CrossRef]
- Li, H.; Mao, X.; Wang, H.; Geng, Z.; Xiong, B.; Zhang, L.; Liu, S.; Xu, J.; Zhu, J. Kinetically dependent self-assembly of chiral block copolymers under 3D confinement. Macromolecules 2020, 53, 4214–4223. [Google Scholar] [CrossRef]
- Li, H.; Xiong, B.; Geng, Z.; Wang, H.; Gao, Y.; Gu, P.; Xie, H.; Xu, J.; Zhu, J. Temperature- and solvent-mediated confined assembly of semicrystalline chiral block copolymers in evaporative emulsion droplets. Macromolecules 2021. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, H.; Jin, S.-M.; Yan, X.; Ren, M.; Xiong, B.; Wang, K.; Deng, R.; Chen, S.; Lee, E.; et al. Hierarchical microphase behaviors of chiral block copolymers under kinetic and thermodynamic control. CCS Chem. 2021, 3, 2561–2569. [Google Scholar] [CrossRef]
- Löbling, T.I.; Hiekkataipale, P.; Hanisch, A.; Bennet, F.; Schmalz, H.; Ikkala, O.; Gröschel, A.H.; Müller, A.H.E. Bulk morphologies of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) triblock terpolymers. Polymer 2015, 72, 479–489. [Google Scholar] [CrossRef]
- Bielawski, C.W.; Benitez, D.; Morita, T.; Grubbs, R.H. Synthesis of end-functionalized poly(norbornene)s via ring-opening methathesis polymerization. Macromolecules 2001, 34, 8610–8618. [Google Scholar] [CrossRef] [Green Version]
- Touris, A.; Chanpuriya, S.; Hillmyer, M.A.; Bates, F.S. Synthetic strategies for the generation of ABCA’ type asymmetric tetrablock terpolymers. Polym. Chem. 2014, 5, 5551–5559. [Google Scholar] [CrossRef]
- He, Y.; Eloi, J.C.; Harniman, R.L.; Richardson, R.M.; Whittell, G.R.; Mathers, R.T.; Dove, A.P.; O’Reilly, R.K.; Manners, I. Uniform biodegradable fiber-like micelles and block comicelles via “living” crystallization-driven self-assembly of poly(L-lactide) block copolymers: The importance of reducing unimer self-nucleation via hydrogen bond disruption. J. Am. Chem. Soc. 2019, 141, 19088–19098. [Google Scholar] [CrossRef]
- Wong, C.K.; Heidelmann, M.; Dulle, M.; Qiang, X.; Förster, S.; Stenzel, M.H.; Gröschel, A.H. Vesicular polymer hexosomes exhibit topological defects. J. Am. Chem. Soc. 2020, 142, 10989–10995. [Google Scholar] [CrossRef]
- Gröschel, T.I.; Wong, C.K.; Haataja, J.S.; Dias, M.A.; Gröschel, A.H. Direct observation of topological defects in striped block copolymer discs and polymersomes. ACS Nano 2020, 14, 4829–4838. [Google Scholar] [CrossRef] [PubMed]
- Khadilkar, M.R.; Nikoubashman, A. Self-assembly of semiflexible polymers confined to thin spherical shells. Soft Matter 2018, 14, 6903–6911. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Guan, Z.; Lin, J.; Cai, C. Strip-pattern-spheres self-assembled from polypeptide-based polymer mixtures: Structure and defect features. Sci. Rep. 2016, 6, 29796. [Google Scholar] [CrossRef] [Green Version]
- Vacogne, C.D.; Wei, C.; Tauer, K.; Schlaad, H. Self-assembly of α-helical polypeptides into microscopic and enantiomorphic spirals. J. Am. Chem. Soc. 2018, 140, 11387–11394. [Google Scholar] [CrossRef]
- Balsamo, V.; von Gyldenfeldt, F.; Stadler, R. “Superductile” semicrystalline ABC triblock copolymers with the polystyrene block (A) as the matrix. Macromolecules 1999, 32, 1226–1232. [Google Scholar] [CrossRef]
- Balsamo, V.; Gil, G.; Urbina de Navarro, C.; Hamley, I.W.; von Gyldenfeldt, F.; Abetz, V.; Cañizales, E. Morphological behavior of thermally treated polystyrene-b-polybutadiene-b-poly(ε-caprolactone) ABC triblock copolymers. Macromolecules 2003, 36, 4515–4525. [Google Scholar] [CrossRef]
Code | Pn a | fS b | fB | fL | Mn c | Đ d |
---|---|---|---|---|---|---|
SBL-10 | S118B310LLA27 | 0.49 | 0.41 | 0.10 | 40,100 | 1.12 |
SBL-37 | S118B310LLA150 | 0.34 | 0.29 | 0.37 | 57,900 | 1.14 |
SBL-52 | S118B310LLA280 | 0.26 | 0.22 | 0.52 | 76,000 | 1.17 |
SBL-56 | S295B292LLA408 | 0.29 | 0.15 | 0.56 | 105,300 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janoszka, N.; Azhdari, S.; Hils, C.; Coban, D.; Schmalz, H.; Gröschel, A.H. Morphology and Degradation of Multicompartment Microparticles Based on Semi-Crystalline Polystyrene-block-Polybutadiene-block-Poly(L-lactide) Triblock Terpolymers. Polymers 2021, 13, 4358. https://doi.org/10.3390/polym13244358
Janoszka N, Azhdari S, Hils C, Coban D, Schmalz H, Gröschel AH. Morphology and Degradation of Multicompartment Microparticles Based on Semi-Crystalline Polystyrene-block-Polybutadiene-block-Poly(L-lactide) Triblock Terpolymers. Polymers. 2021; 13(24):4358. https://doi.org/10.3390/polym13244358
Chicago/Turabian StyleJanoszka, Nicole, Suna Azhdari, Christian Hils, Deniz Coban, Holger Schmalz, and André H. Gröschel. 2021. "Morphology and Degradation of Multicompartment Microparticles Based on Semi-Crystalline Polystyrene-block-Polybutadiene-block-Poly(L-lactide) Triblock Terpolymers" Polymers 13, no. 24: 4358. https://doi.org/10.3390/polym13244358
APA StyleJanoszka, N., Azhdari, S., Hils, C., Coban, D., Schmalz, H., & Gröschel, A. H. (2021). Morphology and Degradation of Multicompartment Microparticles Based on Semi-Crystalline Polystyrene-block-Polybutadiene-block-Poly(L-lactide) Triblock Terpolymers. Polymers, 13(24), 4358. https://doi.org/10.3390/polym13244358