Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon
Abstract
:1. Introduction
2. Natural and Artificial Holistic-Integrated Molecular Systems
3. Photo-Induced Energy Transfer Processes
3.1. FRET Phenomenon
3.2. Dendrimer-Based Molecular Systems for FRET Phenomenon
4. Future Perspectives
5. Concluding Remarks
5.1. General Outlook
5.2. DendrimericSystems Attributes
5.3. Technological Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pellegrini-Masini, G.; Pirni, A.; Maran, S.; Klöckner, C.A. Delivering a timely and Just Energy Transition: Which policy research priorities? Environ. Policy Gov. 2020, 30, 293–305. [Google Scholar] [CrossRef]
- Ghanbari, M.; Mozafari Vanani, L. Evaluation of fuel and spark system variables of a gasoline engine due to lack of timely replacement of fuel filter. Karafan Q. Sci. J. 2021, 17, 133–145. [Google Scholar]
- Litvinenko, V. The role of hydrocarbons in the global energy agenda: The focus on liquefied natural gas. Resources 2020, 9, 59. [Google Scholar] [CrossRef]
- Yang, C.; Gao, F.; Dong, M. Energy efficiency modeling of integrated energy system in coastal areas. J. Coast. Res. 2020, 103, 995–1001. [Google Scholar] [CrossRef]
- Wang, J.; Geng, L.; Ding, L.; Zhu, H.; Yurchenko, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl. Energy 2020, 267, 114902. [Google Scholar] [CrossRef]
- Sidhu, K. Non-Conventional Energy Resources; Punjab State Electric Board, Punjab Engineering College Campus: Chandigar, India, 2007. [Google Scholar]
- Rodríguez-Monroy, C.; Mármol-Acitores, G.; Nilsson-Cifuentes, G. Electricity generation in Chile using non-conventional renewable energy sources—A focus on biomass. Renew. Sustain. Energy Rev. 2018, 81, 937–945. [Google Scholar] [CrossRef]
- Singh, R.; Krishna, B.B.; Kumar, J.; Bhaskar, T. Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresour. Technol. 2016, 199, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Rathore, N.S.; Panwar, N. Renewable Energy Sources for Sustainable Development; New India Publishing: Delhi, India, 2007. [Google Scholar]
- Biswas, S. The Sun and the Heliosphere. In Cosmic Perspectives in Space Physics; Springer: Berlin/Heidelberg, Germany, 2000; pp. 87–163. [Google Scholar]
- Mittasch, A.; Frankenburg, W. Early studies of multicomponent catalysts. In Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 1950; Volume 2, pp. 81–104. [Google Scholar]
- Amankwah, E. Solar Energy: A Potential Source of Energy for Agricultural and Rural Development in Ghana. J. Agric. Ecol. Res. Int. 2015, 3, 131–140. [Google Scholar] [CrossRef]
- Asplund, R.W. Profiting from Clean Energy: A Complete Guide to Trading Green in Solar, Wind, Ethanol, Fuel Cell, Carbon Credit Industries and More; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 307. [Google Scholar]
- Grätzel, M. Photovoltaic and photoelectrochemical conversion of solar energy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 993–1005. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Fan, Z.; Jin, Z. Cobalt nanoparticles encapsulated in hollow carbon nitride nanotubes for efficient photocatalytic hydrogen evolution. Energy Technol. 2021, 9, 2100499. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Wang, Y.; Zhang, J. Two-photon induced NIR active core-shell structured WO3/CdS for enhanced solar light photocatalytic performance. Appl. Catal. B Environ. 2020, 272, 118979. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Petrova, S.; Sarlamanov, R. Energy poverty policies in the EU: A critical perspective. Energy Policy 2012, 49, 76–82. [Google Scholar] [CrossRef]
- McHale, J.L. Hierarchal light-harvesting aggregates and their potential for solar energy applications. J. Phys. Chem. Lett. 2012, 3, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Banin, U.; Waiskopf, N.; Hammarström, L.; Boschloo, G.; Freitag, M.; Johansson, E.M.; Sá, J.; Tian, H.; Johnston, M.; Herz, L. Nanotechnology for catalysis and solar energy conversion. Nanotechnology 2020, 32, 042003. [Google Scholar] [CrossRef]
- Lefebvre, O.; Lambert, M.; Randriamampita, C.; Pinto, S.; Lahlil, K.; Peretti, J.; Smadja, C.; Fabbri, F. Light-tunable optical cell manipulation via photoactive azobenzene-containing thin film bio-substrate. Mater. Sci. 2020. [Google Scholar]
- Yi, S.; Sun, S.; Fan, Y.; Zou, Y.; Dai, F.; Si, Y. Scalable fabrication of rechargeable photoactive cellulose nanofibrous membranes for efficient degradation of dyes. Cellulose 2020, 27, 5285–5296. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, T.; Pan, D.; Gao, J.; Zhu, C.; Lin, F.; Zhou, C.; Tai, Q.; Xiao, S.; Yuan, Y. MAPbI3/agarose photoactive composite for highly stable unencapsulated perovskite solar cells in humid environment. Nano Energy 2020, 67, 104246. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Liu, C.; Chen, Z.; Tang, X.; Wu, Q.; Zhang, S.; Song, G.; Cong, S.; Chen, Q. Mimicking Nature’s Butterflies: Electrochromic Devices with Dual-Sided Differential Colorations. Adv. Mater. 2021, 33, 2007314. [Google Scholar] [CrossRef]
- Pramanik, K.; Sengupta, P.; Majumder, B.; Datta, P.; Sarkar, P. Artificial Bifunctional Photozyme of Glucose Oxidase–Peroxidase for Solar-Powered Glucose–Peroxide Detection in a Biofluid with Resorcinol–Formaldehyde Polymers. Am. Chem. Soc. Appl. Mater. Interfaces 2020, 12, 36948–36956. [Google Scholar] [CrossRef]
- Dau, H.; Fujita, E.; Sun, L. Artificial photosynthesis: Beyond mimicking nature. ChemSusChem 2017, 10, 4228–4235. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Ding, C.; Chen, R.; Fan, F.; Fu, P.; Yin, H.; Wang, X.; Wang, Z.; Du, P.; Li, C. Mimicking the key functions of photosystem II in artificial photosynthesis for photoelectrocatalytic water splitting. J. Am. Chem. Soc. 2018, 140, 3250–3256. [Google Scholar] [CrossRef]
- Hao, M.; Sun, G.; Zuo, M.; Xu, Z.; Chen, Y.; Hu, X.Y.; Wang, L. A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis. Angew. Chem. Int. Ed. 2020, 59, 10095–10100. [Google Scholar] [CrossRef]
- Ma, X.; Qiao, B.; Yue, J.; Yu, J.; Geng, Y.; Lai, Y.; Feng, E.; Han, X.; Liu, M. Efficient artificial light-harvesting systems based on aggregation-induced emission in supramolecular gels. Soft Matter 2021, 17, 7813–7816. [Google Scholar] [CrossRef]
- Aguilera, M.C.; Roitberg, A.E.; Kleiman, V.D.; Fernandez-Alberti, S.; Galindo, J.F. Unraveling Direct and Indirect Energy Transfer Pathways in a Light-Harvesting Dendrimer. J. Phys. Chem. C 2020, 124, 22383–22391. [Google Scholar] [CrossRef]
- Leonardi, A.A.; Nastasi, F.; Morganti, D.; Lo Faro, M.J.; Picca, R.A.; Cioffi, N.; Franzò, G.; Serroni, S.; Priolo, F.; Puntoriero, F. New hybrid light harvesting antenna based on silicon nanowires and metal dendrimers. Adv. Opt. Mater. 2020, 8, 2001070. [Google Scholar] [CrossRef]
- Martínez, N.P.; Inostroza-Rivera, R.; Durán, B.; Molero, L.; Bonardd, S.; Ramírez, O.; Isaacs, M.; Díaz Díaz, D.; Leiva, A.; Saldías, C. Exploring the effect of the irradiation time on photosensitized dendrimer-based nanoaggregates for potential applications in light-driven water photoreduction. Nanomaterials 2019, 9, 1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm. 2010, 394, 122–142. [Google Scholar] [CrossRef]
- Wu, B.; Lin, Y.; Zhang, Z.; Chen, G. Trapping in dendrimers and regular hyperbranched polymers. J. Chem. Phys. 2012, 137, 044903. [Google Scholar] [CrossRef] [Green Version]
- Jasmine, M.J.; Prasad, E. Fractal growth of PAMAM dendrimer aggregates and its impact on the intrinsic emission properties. J. Phys. Chem. B 2010, 114, 7735–7742. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Zhu, Z.; Tian, Y.; Tong, Y.-l.; Cui, T.-T.; Wang, C.-F.; Chen, S. Dendrimer-induced colloids towards robust fluorescent photonic crystal films and high performance WLEDs. J. Mater. Chem. C 2018, 6, 8187–8193. [Google Scholar] [CrossRef]
- Ybarra, D.; Igartúa, D.; Tuttolomondo, M.; Alonso, S.d.V.; Alvira, F. Photonics techniques applied to the characterization of polyamidoamine (PAMAM) dendrimers to be employed as drug delivery system (DDS). In Proceedings of the Latin America Optics and Photonics Conference, Lima, Peru, 12–15 November 2018; p. Th4A. 40. [Google Scholar]
- Khopade, A.J.; Caruso, F. Electrostatically assembled polyelectrolyte/dendrimer multilayer films as ultrathin nanoreservoirs. Nano Lett. 2002, 2, 415–418. [Google Scholar] [CrossRef]
- Strydom, S.J.; Rose, W.E.; Otto, D.P.; Liebenberg, W.; De Villiers, M.M. Poly (amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 85–93. [Google Scholar] [CrossRef]
- Choi, M.S.; Aida, T.; Luo, H.; Araki, Y.; Ito, O. Fullerene-Terminated Dendritic Multiporphyrin Arrays: “Dendrimer Effects” on Photoinduced Charge Separation. Angew. Chem. 2003, 115, 4194–4197. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Lv, J.; Shao, S.; Wang, L.; Jing, X.; Wang, F. Through-space charge transfer hexaarylbenzene dendrimers with thermally activated delayed fluorescence and aggregation-induced emission for efficient solution-processed OLEDs. Chem. Sci. 2019, 10, 2915–2923. [Google Scholar] [CrossRef] [Green Version]
- Seevinck, M.P. Holism, physical theories and quantum mechanics. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2004, 35, 693–712. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; Esfeld, M. Holism in the Sciences. In Unity of Knowledge (in Transdisciplinary Research for Sustainability); Encyclopedia of Life Support Systems Publishers: Abu Dhabi, United Arab Emirates, 2004. [Google Scholar]
- Banchetti-Robino, M.P. The Limits of Classical Extensional Mereology for the Formalization of Whole–Parts Relations in Quantum Chemical Systems. Philosophies 2020, 5, 16. [Google Scholar] [CrossRef]
- Lawrence, C.; Weisz, G. Greater than the Parts: Holism in Biomedicine, 1920–1950; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Shen, H.; Wang, Y.-Z.; Liu, G.; Li, L.; Xia, R.; Luo, B.; Wang, J.; Suo, D.; Shi, W.; Yong, Y.-C. A Whole-Cell Inorganic-Biohybrid System Integrated by Reduced Graphene Oxide for Boosting Solar Hydrogen Production. Am. Chem. Soc. Catal. 2020, 10, 13290–13295. [Google Scholar] [CrossRef]
- He, Q.; Liao, Y.; Zhang, J.; Yao, X.; Zhou, W.; Hong, Y.; Ouyang, H. “All-in-One” Gel System for Whole Procedure of Stem-Cell Amplification and Tissue Engineering. Small 2020, 16, 1906539. [Google Scholar] [CrossRef] [PubMed]
- Marshall-Colon, A.; Long, S.; Allen, D.; Allen, G.; Beard, D.; Benes, B.; von Caemmerer, S.; Christensen, A.; Cox, D.; Hart, J. Crops in silico: A prospectus from the Plants in silico symposium and workshop. Front. Plant Sci. 2017. [Google Scholar]
- Koestler, A. Beyond atomism and holism—The concept of the holon. Perspect. Biol. Med. 1970, 13, 131–154. [Google Scholar] [CrossRef]
- Gupta, M.K.; Misra, K. A holistic approach for integration of biological systems and usage in drug discovery. Netw. Modeling Anal. Health Inform. Bioinform. 2016, 5, 4. [Google Scholar] [CrossRef]
- Chappell, M.; Payne, S. Physiology for Engineers; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Bergstrom, A. Apparent Superluminal Speeds in Evanescent Fields, Quantum Tunnelling and Quantum Entanglement. Int. J. Phys. 2015, 3, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Bartos, P.J.; Porro, A. Application of nanotechnology in construction. Mater. Struct. 2004, 37, 649–658. [Google Scholar] [CrossRef]
- Lindsay, S. Introduction to Nanoscience; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Ling, X.Y.; Reinhoudt, D.N.; Huskens, J. From supramolecular chemistry to nanotechnology: Assembly of 3D nanostructures. Pure Appl. Chem. 2009, 81, 2225–2233. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, L.K.; Mori, T.; Ariga, K. Dynamic nanoarchitectonics: Supramolecular polymorphism and differentiation, shape-shifter and hand-operating nanotechnology. Curr. Opin. Colloid Interface Sci. 2018, 35, 68–80. [Google Scholar] [CrossRef]
- Jo, J.H.; Otanicar, T. A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems. Renew. Energy 2011, 36, 2992–3000. [Google Scholar] [CrossRef]
- Fei, Y.; Li, M.; Li, Y.; Wang, X.; Xue, C.; Wu, Z.; Xu, J.; Xiazeng, Z.; Cai, K.-Y.; Luo, Z. Hierarchical integration of degradable mesoporous silica nanoreservoirs and supramolecular dendrimer complex as a general-purpose tumor-targeted biomimetic nanoplatform for gene/small-molecule anticancer drug co-delivery. Nanoscale 2020, 12, 16102–16112. [Google Scholar] [CrossRef]
- Divsar, F. A label-free photoelectrochemical DNA biosensor using a quantum dot–dendrimer nanocomposite. Anal. Bioanal. Chem. 2019, 411, 6867–6875. [Google Scholar] [CrossRef]
- Pounds, K.; Jairam, S.; Bao, H.; Meng, S.; Zhang, L.; Godinez, S.; Savin, D.A.; Pelletier, W.; Correll, M.J.; Tong, Z. Glycerol-Based Dendrimer Nanocomposite Film as a Tunable pH-Sensor for Food Packaging. Am. Chem. Soc. Appl. Mater. Interfaces 2021, 13, 23268–23281. [Google Scholar] [CrossRef]
- Oki, K.; Horike, S.; Yamaguchi, M.; Takechi, C.; Koshiba, Y.; Fukushima, T.; Mori, A.; Ishida, K. Thermoelectric thiophene dendrimers with large Seebeck coefficients. Mol. Syst. Des. Eng. 2020, 5, 809–814. [Google Scholar] [CrossRef]
- Fan, W.; Du, Y.; Zhou, J.; Ma, X.; Liu, Y.; Xu, S.; Cao, S. NH3+-Functionalized PAMAM Dendrimers Enhancing Power Conversion Efficiency and Stability of Perovskite Solar Cells. J. Electron. Mater. 2021, 50, 6414–6425. [Google Scholar] [CrossRef]
- Kathan, M.; Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem. Soc. Rev. 2017, 46, 5536–5550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bai, L.; Li, Z.; Qu, Y.; Jing, L. Review of strategies for the fabrication of heterojunctional nanocomposites as efficient visible-light catalysts by modulating excited electrons with appropriate thermodynamic energy. J. Mater. Chem. A 2019, 7, 10879–10897. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Hogan, N.L.; Wu, S.; Lu, P.; Fan, Z.; Dai, Y.; Zeng, B.; Starko-Bowes, R.; Jian, J. Nanoscale artificial plasmonic lattice in self-assembled vertically aligned nitride–metal hybrid metamaterials. Adv. Sci. 2018, 5, 1800416. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Fujita, S. A Photoresponsive Artificial Viral Capsid Self-Assembled from an Azobenzene-Containing β-Annulus Peptide. Int. J. Mol. Sci. 2021, 22, 4028. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.H.; Li, K.; Yang, H.; Chen, P.Y. Multifunctionality and Mechanical Actuation of 2D Materials for Skin-Mimicking Capabilities. Adv. Mater. 2018, 30, 1802418. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Jeon, W.; Choi, W. Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nat. Commun. 2021, 12, 2528. [Google Scholar] [CrossRef]
- Gnansounou, E.; Alves, C.M. Integrated Sustainability Assessment of Biofuels. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 197–214. [Google Scholar]
- Abdullah, M.M.; Assi, A.T.; Asadalla, N.B. Integrated Ecosystem Sustainability Approach: Toward a Holistic System of Thinking of Managing Arid Ecosystems. Open J. Ecol. 2019, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Alfonso-Hernandez, L.; Oldani, N.; Athanasopoulos, S.; Lupton, J.; Tretiak, S.; Fernandez-Alberti, S. Photoinduced Energy Transfer in Linear Guest–Host Chromophores: A Computational Study. J. Phys. Chem. A 2021, 125, 5303–5313. [Google Scholar] [CrossRef]
- Puntoriero, F.; Nastasi, F.; Campagna, S.; Bura, T.; Ziessel, R. Vectorial photoinduced energy transfer between boron–dipyrromethene (Bodipy) chromophores across a fluorene bridge. Chem. Eur. J. 2010, 16, 8832–8845. [Google Scholar] [CrossRef]
- Wasielewski, M.R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 1992, 92, 435–461. [Google Scholar] [CrossRef]
- Sessler, J.L.; Wang, B.; Harriman, A. Photoinduced energy transfer in associated, but noncovalently-linked photosynthetic model systems. J. Am. Chem. Soc. 1995, 117, 704–714. [Google Scholar] [CrossRef]
- Goudriaan, J.; Van Laar, H.; Van Keulen, H.; Louwerse, W. Photosynthesis, CO2 and plant production. In Wheat Growth and Modelling; Springer: Berlin/Heidelberg, Germany, 1985; pp. 107–122. [Google Scholar]
- Woo, H.Y.; Korystov, D.; Mikhailovsky, A.; Nguyen, T.-Q.; Bazan, G.C. Two-photon absorption in aqueous micellar solutions. J. Am. Chem. Soc. 2005, 127, 13794–13795. [Google Scholar] [CrossRef] [PubMed]
- Nag, O.K.; Lim, C.S.; Nguyen, B.L.; Kim, B.; Jang, J.; Han, J.H.; Cho, B.R.; Woo, H.Y. pH-responsive water soluble smart vesicles containing a bis (styryl) benzene derivative for two-photon microscopy imaging. J. Mater. Chem. 2012, 22, 1977–1984. [Google Scholar] [CrossRef]
- Strandwitz, N.C.; Khan, A.; Boettcher, S.W.; Mikhailovsky, A.A.; Hawker, C.J.; Nguyen, T.-Q.; Stucky, G.D. One-and two-photon induced polymerization of methylmethacrylate using colloidal CdS semiconductor quantum dots. J. Am. Chem. Soc. 2008, 130, 8280–8288. [Google Scholar] [CrossRef]
- Peulen, T.-O.; Opanasyuk, O.; Seidel, C.A. Combining graphical and analytical methods with molecular simulations to analyze time-resolved FRET measurements of labeled macromolecules accurately. J. Phys. Chem. B 2017, 121, 8211–8241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Zhang, J.; Fang, H.; Ma, S.; Chen, Q.; Sun, H.; Im, C.; Tian, W. Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two-photon absorption cross-section. Polym. Chem. 2014, 5, 479–488. [Google Scholar] [CrossRef]
- Sakamoto, A.; Mori, K.; Imura, K.; Okamoto, H. Nanoscale Two-Photon Induced Polymerization of Diacetylene Langmuir−Blodgett Film by Near-Field Photoirradiation. J. Phys. Chem. C 2011, 115, 6190–6194. [Google Scholar] [CrossRef]
- Wu, S.; Ho, W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope. Phys. Rev. B 2010, 82, 085444. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Yi, C.; Song, B.; Qi, Q.; Jiang, W.; Zheng, Y.; Qi, Z.; Sun, Y. Self-host homoleptic green iridium dendrimers based on diphenylamine dendrons for highly efficient single-layer PhOLEDs. J. Mater. Chem. C 2014, 2, 1104–1115. [Google Scholar] [CrossRef]
- Zhang, Y.; Pei, L.; Zheng, Z.; Yuan, Y.; Xie, T.; Yang, J.; Chen, S.; Wang, J.; Waclawik, E.R.; Zhu, H. Heterojunctions between amorphous and crystalline niobium oxide with enhanced photoactivity for selective aerobic oxidation of benzylamine to imine under visible light. J. Mater. Chem. A 2015, 3, 18045–18052. [Google Scholar] [CrossRef]
- Trost, J.T.; Blankenship, R.E. Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 1989, 28, 9898–9904. [Google Scholar] [CrossRef]
- Imani, M.; Mohajeri, N.; Rastegar, M.; Zarghami, N. Recent advances in FRET-Based biosensors for biomedical applications. Anal. Biochem. 2021, 630, 114323. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Wang, R.; You, X.; Geng, Y.; Zhu, D.; Zhang, N.; Bryce, M.R. Supramolecular oligourethane gels as light-harvesting antennae: Achieving multicolour luminescence and white-light emission through FRET. J. Mater. Chem. C 2021, 9, 13331–13337. [Google Scholar] [CrossRef]
- Asher, W.B.; Geggier, P.; Holsey, M.D.; Gilmore, G.T.; Pati, A.K.; Meszaros, J.; Terry, D.S.; Mathiasen, S.; Kaliszewski, M.J.; McCauley, M.D. Single-molecule FRET imaging of GPCR dimers in living cells. Nat. Methods 2021, 18, 397–405. [Google Scholar] [CrossRef]
- Gorbenko, G.; Zhytniakivska, O.; Vus, K.; Tarabara, U.; Trusova, V. Three-step Förster resonance energy transfer on amyloid fibril scaffold. Phys. Chem. Chem. Phys. 2021, 23, 14746–14754. [Google Scholar] [CrossRef]
- Gong, Y.; Cole, J.M.; Ozoe, H.; Kawase, T. Photoexcited phenyl ring twisting in quinodimethane dyes enhances photovoltaic performance in dye-sensitized solar cells. Am. Chem. Soc. Appl. Energy Mater. 2018, 1, 1127–1139. [Google Scholar] [CrossRef]
- Ghuman, K.K.; Hoch, L.B.; Szymanski, P.; Loh, J.Y.; Kherani, N.P.; El-Sayed, M.A.; Ozin, G.A.; Singh, C.V. Photoexcited surface frustrated Lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 2016, 138, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Dey, D.; Chakraborty, S.; Saha, J.; Roy, A.D.; Chakraborty, S.; Debnath, P.; Bhattacharjee, D. Fluorescence resonance energy transfer (FRET) sensor. Sci. Lett. J. 2015, 4, 119. [Google Scholar]
- Chamorro-Garcia, A.; Merkoçi, A. Nanobiosensors in diagnostics. Nanobiomedicine 2016, 3, 1849543516663574. [Google Scholar] [CrossRef]
- Perrin, J. Fluorescence and molecular induction by resonance. CR Acad. Sci. Paris 1927, 184, 1097–1100. [Google Scholar]
- Clegg, R.M. The history of FRET. In Reviews in Fluorescence 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–45. [Google Scholar]
- Keyvan Rad, J.; Mahdavian, A.R.; Salehi-Mobarakeh, H.; Abdollahi, A. FRET phenomenon in photoreversible dual-color fluorescent polymeric nanoparticles based on azocarbazole/spiropyran derivatives. Macromolecules 2016, 49, 141–152. [Google Scholar] [CrossRef]
- Rashatasakhon, P.; Vongnam, K.; Siripornnoppakhun, W.; Vilaivan, T.; Sukwattanasinitt, M. FRET detection of DNA sequence via electrostatic interaction of polycationic phenyleneethynylene dendrimer with DNA/PNA hybrid. Talanta 2012, 88, 593–598. [Google Scholar] [CrossRef]
- Morton, S.W.; Zhao, X.; Quadir, M.A.; Hammond, P.T. FRET-enabled biological characterization of polymeric micelles. Biomaterials 2014, 35, 3489–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, H.C. Resonance energy transfer. In Topics in Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2002; pp. 127–176. [Google Scholar]
- Clegg, R.M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 1995, 6, 103–110. [Google Scholar] [CrossRef]
- Koukaras, E.N. Fermis Golden Rule; Physics Department, University of Patras: Patras, Greece, 2020. [Google Scholar]
- Broussard, J.A.; Green, K.J. Research techniques made simple: Methodology and applications of Förster Resonance Energy Transfer (FRET) microscopy. J. Investig. Dermatol. 2017, 137, e185–e191. [Google Scholar] [CrossRef] [Green Version]
- Albareda, G.; Suné, J.; Oriols, X. Many-particle hamiltonian for open systems with full coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices. Phys. Rev. B 2009, 79, 075315. [Google Scholar] [CrossRef] [Green Version]
- Scholes, G.D.; Jordanides, X.J.; Fleming, G.R. Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J. Phys. Chem. B 2001, 105, 1640–1651. [Google Scholar] [CrossRef]
- Beljonne, D.; Curutchet, C.; Scholes, G.D.; Silbey, R.J. Beyond Forster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 2009, 113, 6583–6599. [Google Scholar] [CrossRef] [PubMed]
- Wolber, P.; Hudson, B.S. An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 1979, 28, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, R.D.; Andrews, D.L. Twin-donor systems for resonance energy transfer. Chem. Phys. Lett. 1999, 301, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Jang, S.J. Theoretical investigation of non-Förster exciton transfer mechanisms in perylene diimide donor, phenylene bridge, and terrylene diimide acceptor systems. J. Chem. Phys. 2020, 153, 144305. [Google Scholar] [CrossRef]
- Clegg, R.M. Förster resonance energy transfer—FRET what is it, why do it, and how it’s done. Lab. Tech. Biochem. Mol. Biol. 2009, 33, 1–57. [Google Scholar]
- Kleima, F.J.; Hofmann, E.; Gobets, B.; van Stokkum, I.H.; van Grondelle, R.; Diederichs, K.; van Amerongen, H. Förster excitation energy transfer in peridinin-chlorophyll-a-protein. Biophys. J. 2000, 78, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Förster, T.; Sinanoglu, O. Modern Quantum Chemistry; Academic Press: New York, NY, USA, 1965; Volume 3, pp. 93–137. [Google Scholar]
- Dale, R.E.; Eisinger, J.; Blumberg, W. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 1979, 26, 161–193. [Google Scholar] [CrossRef] [Green Version]
- Kyrychenko, A.; Rodnin, M.V.; Ghatak, C.; Ladokhin, A.S. Joint refinement of FRET measurements using spectroscopic and computational tools. Anal. Biochem. 2017, 522, 1–9. [Google Scholar] [CrossRef]
- Vincent, R.; Carminati, R. Magneto-optical control of Förster energy transfer. Phys. Rev. B 2011, 83, 165426. [Google Scholar] [CrossRef] [Green Version]
- Shirasaki, Y.; Anikeeva, P.O.; Tischler, J.R.; Bradley, M.S.; Bulović, V. Efficient Förster energy transfer from phosphorescent organic molecules to J-aggregate thin films. Chem. Phys. Lett. 2010, 485, 243–246. [Google Scholar] [CrossRef]
- Braslavsky, S.E.; Fron, E.; Rodríguez, H.B.; San Román, E.; Scholes, G.D.; Schweitzer, G.; Valeur, B.; Wirz, J. Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer. Photochem. Photobiol. Sci. 2008, 7, 1444–1448. [Google Scholar] [CrossRef]
- Valeur, B. Front Matter and Index. In Molecular Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, Germany, 2001; p. 92. [Google Scholar]
- Shahid, S.; Hassan, M.I.; Islam, A.; Ahmad, F. Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: In vitro and in silico approaches. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 178–197. [Google Scholar] [CrossRef]
- Michalet, X.; Weiss, S.; Jäger, M. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem. Rev. 2006, 106, 1785–1813. [Google Scholar] [CrossRef]
- Ulloa-Godinez, H.H.; García-Guadalupe, E.M.; Ramírez-Sánchez, U.H.; Regla-Carrillo, C.J.; Fajardo-Montiel, L.A. Solar radiation data for the state of Jalisco and Guadalajara metropolitan zone, Mexico. Comput. Water Energy Environ. Eng. 2017, 6, 205. [Google Scholar] [CrossRef] [Green Version]
- Lotfabadi, P. Solar considerations in high-rise buildings. Energy Build. 2015, 89, 183–195. [Google Scholar] [CrossRef]
- Snegirjovs, A.; Lebedeva, K.; Kashkarova, G.; Shipkovs, P. Solar technologies application in milk production. In Proceedings of the 17th International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, 23–25 May 2018; pp. 1679–1683. [Google Scholar]
- Neville, R.C. Solar Energy Conversion: The Solar Cell; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Osterloh, F.E. Photocatalysis versus photosynthesis: A sensitivity analysis of devices for solar energy conversion and chemical transformations. Am. Chem. Soc. Energy Lett. 2017, 2, 445–453. [Google Scholar] [CrossRef]
- Madhu, M.; Ramakrishnan, R.; Vijay, V.; Hariharan, M. Free Charge Carriers in Homo-Sorted π-Stacks of Donor–Acceptor Conjugates. Chem. Rev. 2021, 121, 8234–8284. [Google Scholar] [CrossRef]
- Libonati, F.; Buehler, M.J. Advanced structural materials by bioinspiration. Adv. Eng. Mater. 2017, 19, 1600787. [Google Scholar] [CrossRef]
- Goor, O.J.; Hendrikse, S.I.; Dankers, P.Y.; Meijer, E. From supramolecular polymers to multi-component biomaterials. Chem. Soc. Rev. 2017, 46, 6621–6637. [Google Scholar] [CrossRef] [Green Version]
- Tomalia, D.A.; Nixon, L.S.; Hedstrand, D.M. The role of branch cell symmetry and other critical nanoscale design parameters in the determination of dendrimer encapsulation properties. Biomolecules 2020, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.T.; Tang, S.; Cannon, J.; Yang, K.; Harrison, R.; Ruge, M.; O’Konek, J.J.; Choi, S.K. Shielded α-Nucleophile Nanoreactor for Topical Decontamination of Reactive Organophosphate. Am. Chem. Soc. Appl. Mater. Interfaces 2020, 12, 33500–33515. [Google Scholar] [CrossRef]
- Xu, H.; Liu, J.; Liu, J.; Yu, C.; Zhai, Z.; Qin, G.; Liu, F. Self-assembled binary multichromophore dendrimers with enhanced electro-optic coefficients and alignment stability. Mater. Chem. Front. 2020, 4, 168–175. [Google Scholar] [CrossRef]
- Lone, M.S.; Bhat, P.A.; Afzal, S.; Chat, O.A.; Dar, A.A. Energy transduction through FRET in self-assembled soft nanostructures based on surfactants/polymers: Current scenario and prospects. Soft Matter 2021, 17, 425–446. [Google Scholar] [CrossRef]
- Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D.J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 2018, 118, 5201–5241. [Google Scholar] [CrossRef] [Green Version]
- Liang, A.D.; Serrano-Plana, J.; Peterson, R.L.; Ward, T.R. Artificial metalloenzymes based on the biotin–streptavidin technology: Enzymatic cascades and directed evolution. Acc. Chem. Res. 2019, 52, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Kadam, G.; Gupta, A.; Bhosale, S.V.; Zheng, F.; Zhou, C.H.; Jia, B.H.; Dalal, D.S.; Li, J.L. A Biomimetic Supramolecular Approach for Charge Transfer between Donor and Acceptor Chromophores with Aggregation-Induced Emission. Chem. Eur. J. 2018, 24, 14668–14678. [Google Scholar] [CrossRef]
- Dover, C.B.; Gallaher, J.K.; Frazer, L.; Tapping, P.C.; Petty, A.J.; Crossley, M.J.; Anthony, J.E.; Kee, T.W.; Schmidt, T.W. Endothermic singlet fission is hindered by excimer formation. Nat. Chem. 2018, 10, 305–310. [Google Scholar] [CrossRef]
- Serin, J.M.; Brousmiche, D.W.; Fréchet, J.M. Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem. Commun. 2002, 22, 2605–2607. [Google Scholar] [CrossRef]
- Modi, V.; Donnini, S.; Groenhof, G.; Morozov, D. Protonation of the biliverdin IXα chromophore in the red and far-red photoactive states of a bacteriophytochrome. J. Phys. Chem. B 2019, 123, 2325–2334. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Limpouchová, Z.; Procházka, K.; Liu, Y.; Min, Y. Phase Equilibria and Conformational Behavior of Dendrimers in Porous Media: Towards Chromatographic Analysis of Dendrimers. J. Colloid Interface Sci. 2021, 608, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, X.; Yong, T.; Miao, Y.; Zhang, C.; Zhong Tang, B. Multicolor tunable polymeric nanoparticle from the tetraphenylethylene cage for temperature sensing in living cells. J. Am. Chem. Soc. 2019, 142, 512–519. [Google Scholar] [CrossRef]
- Young, R.M.; Wasielewski, M.R. Mixed electronic states in molecular dimers: Connecting singlet fission, excimer formation, and symmetry-breaking charge transfer. Acc. Chem. Res. 2020, 53, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.J.; Kwak, B.E. Competition of the roles of π-conjugated domain between emission center and quenching origin in the photoluminescence of carbon dots depending on the interparticle separation. Carbon 2021, 183, 560–570. [Google Scholar] [CrossRef]
- Lee, J.W.; Ko, Y.H.; Park, S.H.; Yamaguchi, K.; Kim, K. Novel pseudorotaxane-terminated dendrimers: Supramolecular modification of dendrimer periphery. Angew. Chem. Int. Ed. 2001, 40, 746–749. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, Y.; Szymanski, C.; McNeill, J. Energy transfer in a nanoscale multichromophoric system: Fluorescent dye-doped conjugated polymer nanoparticles. J. Phys. Chem. C 2008, 112, 1772–1781. [Google Scholar] [CrossRef] [Green Version]
- Cotlet, M.; Vosch, T.; Habuchi, S.; Weil, T.; Müllen, K.; Hofkens, J.; De Schryver, F. Probing Intramolecular Förster resonance energy transfer in a naphthaleneimide−peryleneimide−terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy. J. Am. Chem. Soc. 2005, 127, 9760–9768. [Google Scholar] [CrossRef] [PubMed]
- Mu, Z.; Chen, Q.; Zhang, L.; Guan, D.; Li, H. Photodegradation of atmospheric chromophores: Changes in oxidation state and photochemical reactivity. Atmos. Chem. Phys. 2021, 21, 11581–11591. [Google Scholar] [CrossRef]
- Liang, Y.; Huo, Q.; Lu, W.; Jiang, L.; Gao, W.; Xu, L.; Han, S.; Cao, J.; Zhang, T.; Sun, Y. Fluorescence resonance energy transfer visualization of molecular delivery from polymeric micelles. J. Biomed. Nanotechnol. 2018, 14, 1308–1316. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhou, M. Synthesis and properties of a dendritic FRET donor–acceptor system with cationic iridium (III) complex core and carbazolyl periphery. Dalton Trans. 2012, 41, 2582–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varnavski, O.; Samuel, I.; Pålsson, L.-O.; Beavington, R.; Burn, P.; Goodson, T., III. Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system. J. Chem. Phys. 2002, 116, 8893–8903. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.R.; Hinojosa, A.R.C.; Eccher, J.; Tonet, M.D.; Brondani, D.; Zapp, E.; Curcio, S.F.; Postacchini, B.B.; Cazati, T.; Vieira, A.A. Strongly luminescent and liquid-crystalline π-conjugated 2-methyl[1,2,3]benzotriazoles with a linear donor-acceptor-donor structure. J. Mol. Liq. 2020, 314, 113616. [Google Scholar] [CrossRef]
- Oar, M.A.; Serin, J.M.; Dichtel, W.R.; Fréchet, J.M.; Ohulchanskyy, T.Y.; Prasad, P.N. Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer. Chem. Mater. 2005, 17, 2267–2275. [Google Scholar] [CrossRef]
- Hu, J.; Wang, T.; Zhou, L.; Wei, S. A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition. J. Photochem. Photobiol. B Biol. 2020, 209, 111955. [Google Scholar] [CrossRef]
- Carrone, G.; Gantov, F.; Slep, L.D.; Etchenique, R. Fluorescent ligands and energy transfer in photoactive ruthenium–bipyridine complexes. J. Phys. Chem. A 2014, 118, 10416–10424. [Google Scholar] [CrossRef]
- Bergamini, G.; Ceroni, P.; Fabbrizi, P.; Cicchi, S. A multichromophoric dendrimer: From synthesis to energy up-conversion in a rigid matrix. Chem. Commun. 2011, 47, 12780–12782. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zeng, Y.; Yu, T.; Chen, J.; Yang, G.; Li, Y. Advances in photofunctional dendrimers for solar energy conversion. J. Phys. Chem. Lett. 2014, 5, 2340–2350. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.A.; Whitesell, J.K.; Magde, D.; Zhu, L.-Y. The effect of dye density on the efficiency of photosensitization of TiO2 films: Light-harvesting by phenothiazine-labelled dendritic ruthenium complexes. Molecules 2009, 14, 3851–3867. [Google Scholar] [CrossRef]
- Fernandez-Alberti, S.; Kleiman, V.D.; Tretiak, S.; Roitberg, A.E. Nonadiabatic molecular dynamics simulations of the energy transfer between building blocks in a phenylene ethynylene dendrimer. J. Phys. Chem. A 2009, 113, 7535–7542. [Google Scholar] [CrossRef] [Green Version]
- Herperger, K.R.; Krumland, J.; Cocchi, C. Laser-Induced Electronic and Vibronic Dynamics in the Pyrene Molecule and its Cation. J. Phys. Chem. A 2021, 125, 9619–9631. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Alberti, S.; Makhov, D.V.; Tretiak, S.; Shalashilin, D.V. Non-adiabatic excited state molecular dynamics of phenylene ethynylene dendrimer using a multiconfigurational Ehrenfest approach. Phys. Chem. Chem. Phys. 2016, 18, 10028–10040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, X.-F.; Ding, H.; Mao, X.-Y.; Chen, L.-Q. Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal Process. 2021, 156, 107625. [Google Scholar] [CrossRef]
- Galindo, J.F.; Atas, E.; Altan, A.; Kuroda, D.G.; Fernandez-Alberti, S.; Tretiak, S.; Roitberg, A.E.; Kleiman, V.D. Dynamics of energy transfer in a conjugated dendrimer driven by ultrafast localization of excitations. J. Am. Chem. Soc. 2015, 137, 11637–11644. [Google Scholar] [CrossRef] [PubMed]
- Posenitskiy, E.; Rapacioli, M.; Lepetit, B.; Lemoine, D.; Spiegelman, F. Non-adiabatic molecular dynamics investigation of the size dependence of the electronic relaxation in polyacenes. Phys. Chem. Chem. Phys. 2019, 21, 12139–12149. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, J.; Lee, J.; Lee, J. Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. Sci. Adv. 2020, 6, eabb3814. [Google Scholar] [CrossRef]
- Meng, R.; Li, Y.; Gao, K.; Qin, W.; Wang, L. Ultrafast exciton migration and dissociation in π-conjugated polymers driven by local nonuniform electric fields. J. Phys. Chem. C 2017, 121, 20546–20552. [Google Scholar] [CrossRef]
- Heitz, M.; Zamolo, S.; Javor, S.; Reymond, J.-L. Fluorescent Peptide Dendrimers for siRNA Transfection: Tracking pH Responsive Aggregation, siRNA Binding, and Cell Penetration. Bioconjugate Chem. 2020, 31, 1671–1684. [Google Scholar] [CrossRef] [PubMed]
- Skruzny, M.; Pohl, E.; Abella, M. FRET microscopy in yeast. Biosensors 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Zamolo, S.J.; Darbre, T.; Reymond, J.-L. Transfecting tissue models with CRISPR/Cas9 plasmid DNA using peptide dendrimers. Chem. Commun. 2020, 56, 11981–11984. [Google Scholar] [CrossRef]
- Bañales-Leal, Y.; García-Rodríguez, A.; Cuétara-Guadarrama, F.; Vonlanthen, M.; Sorroza-Martínez, K.; Morales-Morales, D.; Rivera, E. Design of flexible dendritic systems bearing donor-acceptor groups (pyrene-porphyrin) for FRET applications. Dyes Pigments 2021, 191, 109382. [Google Scholar] [CrossRef]
- Khatun, A.; Panda, D.K.; Sayresmith, N.; Walter, M.G.; Saha, S. Thiazolothiazole-based luminescent metal–organic frameworks with ligand-to-ligand energy transfer and Hg2+-sensing capabilities. Inorg. Chem. 2019, 58, 12707–12715. [Google Scholar] [CrossRef]
- Bujdák, J. Resonance Energy Transfer in Hybrid Systems of Photoactive Dye Molecules and Layered Inorganics. Dyes Photoactive Mol. Microporous Syst. 2020, 183, 205–250. [Google Scholar]
- Shen, S.; Wang, Y.; Dong, J.; Zhang, R.; Parikh, A.; Chen, J.-G.; Hu, D. Mimicking Thylakoid Membrane with Chlorophyll/TiO2/Lipid Co-Assembly for Light-Harvesting and Oxygen Releasing. Am. Chem. Soc. Appl. Mater. Interfaces 2021, 13, 11461–11469. [Google Scholar] [CrossRef] [PubMed]
- Kaup, R.; Ten Hove, J.B.; Bunschoten, A.; van Leeuwen, F.; Velders, A. Multicompartment dendrimicelles with binary, ternary and quaternary core composition. Nanoscale 2021, 13, 15422–15430. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Saini, S.K.; Choudhury, N.; Kumar, A.; Maiti, B.; De, P.; Kumar, M.; Satapathi, S. Highly Sensitive Detection of Nitro Compounds Using a Fluorescent Copolymer-Based FRET System. Am. Chem. Soc. Appl. Polym. Mater. 2021, 3, 4017–4026. [Google Scholar] [CrossRef]
- Du, C.; Liang, Y.; Ma, Q.; Sun, Q.; Qi, J.; Cao, J.; Han, S.; Liang, M.; Song, B.; Sun, Y. Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. J. Nanobiotechnology 2019, 17, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Song, H.; Zhang, Y.; Liu, J.; Cheng, Z.; Liang, X.-J.; Wang, W.; Kong, D.; Liu, J. FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release. Biomaterials 2017, 145, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Wang, C.; Feng, G.; Zhang, X. Thermo-responsive fluorescent polymers with diverse LCSTs for ratiometric temperature sensing through FRET. Polymers 2018, 10, 283. [Google Scholar] [CrossRef] [Green Version]
Author | Main Topic | Reference |
---|---|---|
Serin et al. | Unidirectional cascade FRET phenomenon in conformationally flexible systems. | [135] |
Wu et al. | Highly rigid dendrimers composed of three condensed aromatic systems, acting as a multichromophoric system. | [143] |
Varnavski et al. | Time-resolved and steady-state measurements showed that π-conjugated dendrimers exhibit a fast and highly efficient energy transfer. | [147] |
Oar et. al | The strategy carried out contemplated using indirect excitation of spatially separated chromophores present in the dendrimer structure by two-photon-excited fluorescence resonance energy transfer (FRET). | [149] |
Carrone et al. | Incorporation of metal centers (rutheniun) as acceptor sites. Specifically, ruthenium complexes coming from bipyridine family exhibited considerable photoactivity. | [151] |
Fernandez-Alberti et al. | Theoretical analysis shed light on the transfer of the electronic state population from the S2 state to the S1 state is related to the ultra-fast transfer of vibrational energy from the two-ring system to the three-ring system. | [155] |
Geng et al. | Experimental studies combined with theoretical analyses allowed them to delve into ultra-fast and unidirectional electronic energy-transfer processes in p-conjugated systems designed to spatially orient the initial excitation in an energy sink environment. | [158] |
Heitz et al. | The incorporation of fluorescent entities in the nucleus of dendrimers (to study the transfection process in cells) makes it possible to monitor the dendrimer–nucleic acid association phenomena through the FRET mechanism. | [163] |
Bañales-Leal et al. | Porphyrinic dendrimers containing Zn (II) and Mg (II) ions showed high non-radiative energy-transfer efficiency, reaching values higher than 99%. | [166] |
Kaup et al. | Preparation of complex coacervated core micelles by compatibilizing four types of dendrimers containing different cores and fluorophores. The FRET phenomenon granted the possibility of monitoring the synchronous encapsulation process of the dendrimers in the micellar nucleus. | [170] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonardd, S.; Díaz Díaz, D.; Leiva, A.; Saldías, C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers 2021, 13, 4404. https://doi.org/10.3390/polym13244404
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers. 2021; 13(24):4404. https://doi.org/10.3390/polym13244404
Chicago/Turabian StyleBonardd, Sebastián, David Díaz Díaz, Angel Leiva, and César Saldías. 2021. "Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon" Polymers 13, no. 24: 4404. https://doi.org/10.3390/polym13244404
APA StyleBonardd, S., Díaz Díaz, D., Leiva, A., & Saldías, C. (2021). Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers, 13(24), 4404. https://doi.org/10.3390/polym13244404