Design and Evaluation of a New Natural Multi-Layered Biopolymeric Adsorbent System-Based Chitosan/Cellulosic Nonwoven Material for the Biosorption of Industrial Textile Effluents
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Preparation of the PEM Bio-Sorbent
2.3. Characterizations
2.3.1. FTIR-ATR Spectroscopy Analysis
2.3.2. Swelling Behavior
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. SEM Morphological Analysis
2.4. Adsorption Batch Experiments
3. Results and Discussion
3.1. Preparation of the PEM Biopolymer System
3.2. FT-IR Spectroscopy Analysis
3.3. Swelling Behavior
3.4. Thermogravimetric Analysis (TGA)
3.5. SEM Morphological Analysis
3.6. Evaluation of the Adsorption Efficiency Using PEM Biopolymer System
3.6.1. Effect of pH on the Adsorption of RR198 onto the PEM Material
3.6.2. Effect of initial dye concentration on the adsorption of RR198 onto the PEM Material
3.6.3. Effect of Time Contact on the Adsorption of RR198 onto the PEM Material
3.6.4. Effect of Temperature on the Adsorption of RR198 onto the PEM Material
3.6.5. Kinetic Modeling
3.6.6. Isotherms and Thermodynamic Investigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Meral, T. Adsorption of basic dyes from single and binary component systems onto bentonite: Simultaneous analysis of basic red 46 and basic yellow 28 by first order derivative spectrophotometric analysis method. J. Hazard. Mater. 2008, 158, 2–64. [Google Scholar]
- Dalia, K.M.; Mohamad, A.M.S.; Azlina, W.A.K.; Azni, I.; Zurina, Z.A. Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 2012, 181, 449–457. [Google Scholar]
- Venkat, S.M.; Vijay, B.P.V. Kinetic and equilibrium studies on the removal of Congo red from aqueous solution using Eucalyptus wood (Eucalyptus globulus) saw dust. J. Taiwan Inst. Chem. Eng. 2013, 44, 81–88. [Google Scholar]
- Enamul, H.; Jong, W.J.; Sung, H.J. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 2011, 185, 507–511. [Google Scholar]
- Karagozoglu, B.; Tasdemir, M.; Demirbas, E.; Kobya, M. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies. J. Hazard. Mater. 2007, 147, 297–306. [Google Scholar] [CrossRef]
- Ming, S.C.; Guo, S.C. Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 2006, 62, 731–740. [Google Scholar]
- Saleh, T.A. Mercury sorption by silica/carbon nanotubes and silica/activated carbon: A comparison study. J. Water Supply Res. Technol. AQUA 2015, 64, 892–903. [Google Scholar] [CrossRef]
- Saleh, T.A. Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): From surface properties to sorption mechanism. Desalin. Water Treat. 2016, 57, 10730–10744. [Google Scholar] [CrossRef]
- Pagga, U.; Brown, D. The degradation of dyestuffs: Part II Behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 1986, 15, 479–491. [Google Scholar] [CrossRef]
- Culp, C.L. The revolution in corporate risk management: A decade of innovations in process and products. J. Appl. Corp. Financ. 2002, 14, 8–26. [Google Scholar] [CrossRef]
- Megahed, A.; Aldridge, B.; Lowe, J. Comparative study on the efficacy of sodium hypochlorite, aqueous ozone, and peracetic acid in the elimination of Salmonella from cattle manure contaminated various surfaces supported by Bayesian analysis. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed]
- Vlyssides, A.; Karlis, P.K.; Rori, N.; Zorpas, A.A. Electrochemical treatment in relation to ph of domestic wastewater using ti/pt electrodes. J. Hazard. Mater. 1999, 95, 215–226. [Google Scholar] [CrossRef]
- Schümann, U.; Gründler, P. Electrochemical degradation of organic substances at bO2 anodes: Monitoring by continuous CO2 measurements. Water Res. 1998, 32, 2835–2842. [Google Scholar] [CrossRef]
- Comninellis, C.; Pulgarin, C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 1993, 23, 108–112. [Google Scholar] [CrossRef]
- Gandini, D.; Mahé, E.; Michaud, P.A.; Haenni, W.; Perret, A.; Comninellis, C. Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment. J. Appl. Electrochem. 2000, 30, 1345–1350. [Google Scholar] [CrossRef]
- Singh, S.; Lo, S.L.; Srivastava, V.C.; Hiwarkar, A.D. Comparative study of electrochemical oxidation for dye degradation: Parametric optimization and mechanism identification. J. Environ. Chem. Eng. 2016, 4, 2911–2921. [Google Scholar] [CrossRef]
- Do, J.S.; Chen, M.L. Decolorization of dye-containing solutions by electrocoagulation. J. Appl. Electrochem. 1994, 24, 785–790. [Google Scholar] [CrossRef]
- Brillas, E.; Bastida, R.M.; Liosa, E.; Casado, J. Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2 - Fed Cathode. J. Electrochem. Soc. 1995, 142, 1733. [Google Scholar] [CrossRef]
- Jabli, M.; Gamha, E.; Sebeia, N.; Hamdaoui, M. Almond shell waste (Prunus dulcis): Functionalization with [dimethy-diallyl-ammonium-chloride-diallylamin-co-polymer] and chitosan polymer and its investigation in dye adsorption. J. Mol. Liq. 2017, 240, 35–44. [Google Scholar] [CrossRef]
- Sebeia, N.; Jabli, M.; Ghith, A.; Elghoul, Y.; Alminderej, F.M. Production of cellulose from Aegagropila Linnaei macro-algae: Chemical modification, characterization and application for the bio-sorption of cationic and anionic dyes from water. Int. J. Biol. Macromol. 2019, 135, 152–162. [Google Scholar] [CrossRef]
- Sebeia, N.; Jabli, M.; Ghith, A.; Elghoul, Y.; Alminderej, F.M. Populus tremula, Nerium oleander and Pergularia tomentosa seed fibers as sources of cellulose and lignin for the bio-sorption of methylene blue. Int. J. Biol. Macromol. 2019, 121, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Singh, G.; Vaish, R. Diesel soot coated non-woven fabric for oil-water separation and adsorption applications. Sci. Rep. 2019, 9, 8503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Guo, J.; Lu, Q.; Xu, D.; Qin, J.; Yan, F. Polypropylene nonwoven fabric@poly(ionic liquid)s for switchable oil/water separation, dye absorption, and antibacterial applications. ChemSusChem 2018, 11, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Haji, A.; Mousavi Shoushtari, A.; Abdouss, M. Plasma activation and acrylic acid grafting on polypropylene nonwoven surface for the removal of cationic dye from aqueous media. Desalin. Water Treat. 2013, 53, 3632–3640. [Google Scholar] [CrossRef]
- Chen, G.; Chen, T.; Hou, K.; Ma, W.; Tebyetekerwa, M.; Cheng, Y.; Zhu, M. Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 2018, 127, 218–227. [Google Scholar] [CrossRef]
- Missoum, K.; Belgacem, M.; Bras, J. Nanofibrillated cellulose surface modification: A review. Materials 2013, 6, 1745–1766. [Google Scholar] [CrossRef] [Green Version]
- El-Ghoul, Y.; Ammar, C.; El-Achari, A. New polymer based modified cyclodextrins grafted to textile fibers; characterization and application to cotton wound dressings. Int. J. Appl. Res. Text. 2014, 2, 11–21. [Google Scholar]
- Liu, W.; Fei, M.-E.; Ban, Y.; Jia, A.; Qiu, R. Preparation and evaluation of green composites from microcrystalline cellulose and a soybean-oil derivative. Polymer 2017, 9, 541. [Google Scholar] [CrossRef] [Green Version]
- Salah, F.; El-Ghoul, Y.; Mahdhi, A.; Majdoub, H.; Jarroux, N.; Sakli, F. Effect of the deacetylation degree on the antibacterial and antibiofilm activity of acemannan from Aloe vera. Ind. Crop. Prod. 2017, 103, 13–18. [Google Scholar] [CrossRef]
- El-Ghoul, Y.; Salah, F.; Majdoub, H.; Sakli, F. Synthesis and study of drug delivery system obtained via β-cyclodextrin functionalization of viscose/polyester dressings. J. Ind. Text. 2017, 47, 489–504. [Google Scholar] [CrossRef]
- Subramani, S.E.; Thinakaran, N. Isotherm, kinetic and thermodynamic studies on the adsorption behavior of textile dyes onto chitosan. Process. Saf. Environ. Prot. 2017, 106, 1–10. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A.Z.; Ibrahim, M.H.; Tan, K.B.; Gholami, Z.; Amouzgar, P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohyd. Polym. 2014, 113, 115–130. [Google Scholar]
- Deng, H.; Zhou, X.; Wang, X.; Zhang, C.; Ding, B.; Zhang, Q.; Du, Y. Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohyd. Polym. 2010, 80, 474–479. [Google Scholar]
- Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F.A.; Zhang, M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterial 2005, 26, 6176–6184. [Google Scholar]
- El-Ghoul, Y. Biological and microbiological performance of new polymer-based chitosan and synthesized aminocyclodextrin finished polypropylene abdominal wall prosthesis biomaterial. Text. Res. J. 2020. [Google Scholar] [CrossRef]
- Alminderej, M.F.; El-Ghoul, Y. Synthesis and study of a new biopolymer-based chitosan/hematoxylin grafted to cotton wound dressings. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef]
- Alminderej, M.F. Study of new cellulosic dressing with enhanced antibacterial performance grafted with a biopolymer of chitosan and myrrh polysaccharide extract. Arab. J. Chem. 2020, 13, 3672–3681. [Google Scholar]
- Salah, F.; El-Ghoul, Y.; Roudesli, S. Bacteriological effects of functionalized cotton dressings. J. Text. Inst. 2016, 107, 171–181. [Google Scholar]
- Salah, F.; El-Ghoul, Y.; Alminderej, F.M.; Golli-Bennour, E.E.; Ouanes, O.; Maciejak, M.; Jarroux, N.; Majdoub, H.; Sakli, F. Development, characterization, and biological assessment of biocompatible cellulosic wound dressing grafted Aloe vera bioactive polysaccharide. Cellulous 2019, 26, 4957–4970. [Google Scholar]
- El-Ghoul, Y.; Alminderej, F.M. Bioactive and superabsorbent cellulosic dressing grafted alginate and Carthamus tinctorius polysaccharide extract for the treatment of chronic wounds. Text. Res. J. 2020. [Google Scholar] [CrossRef]
- Ziegler-Borowska, M.; Chełminiak, D.; Kaczmarek, H.; Kaczmarek-Kędziera, A. Effect of side substituents on thermal stability of the modified chitosan and its nanocomposites with magnetite. J. Therm. Anal. Calorim. 2016, 124, 1267–1280. [Google Scholar] [CrossRef] [Green Version]
- Mucha, M.; Pawlak, A. Thermal analysis of chitosan and its blends. Thermochim. Acta. 2005, 427, 69–76. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Villanueva, M.E.; Piehl, L.L.; Copello, G.J. Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study. Chem. Eng. J. 2015, 280, 41–48. [Google Scholar] [CrossRef]
- Haffad, H.; Zbair, M.; Anfar, Z.; Ahsaine, H.A.; Bouhlal, H.; Khallok, H. Removal of reactive red-198 dye using chitosan as an adsorbent: Optimization by Central composite design coupled with response surface methodology. Toxin Rev. 2019, 1–13. [Google Scholar] [CrossRef]
- Gulnaz, O.; Sahmurova, A.; Kama, S. Removal of reactive red 198 from aqueous solution by Potamogeton crispus. Chem. Eng. J. 2011, 174, 579–585. [Google Scholar] [CrossRef]
- Demarchi, C.A.; Debrassi, A.; Campos Buzzi, F.; Nedelko, N.; Ślawska Waniewska, A.; Dłużewski, P.; Dal Magro, J.; Scapinello, J.; Rodrigues, C.A. Adsorption of the dye Remazol Red 198 (RR198) by O-carboxymethylchitosan-N-lauryl/γ-Fe2O3 magnetic nanoparticles. Arab. J. Chem. 2019, 12, 3444–3453. [Google Scholar] [CrossRef] [Green Version]
- Bazrafshan, E.; Mostafapour, F.K.; Mahvi, A.H. Decolorization of reactive red 198 by adsorption onto ZnCl 2 activated pistachio hull wastes. Int. J. Env. Health Eng. 2014, 3, 38–45. [Google Scholar]
- Malakootian, M.; Mansoorian, H.J.; Hosseini, A.; Khanjani, N. Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing Azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process. Saf. Environ. Protect. 2015, 96, 125–137. [Google Scholar] [CrossRef]
- Tayebi, H.; Dalirandeh, Z.; Rad, A.S.; Mirabi, A. Synthesis of polyaniline/Fe3O4 magnetic nanoparticles for removal of reactive red 198 from textile waste water: Kinetic, isotherm, and thermodynamic studies. Desalin. Water Treat. 2016, 57, 22551–22563. [Google Scholar]
- Elkady, M.F.; Ibrahim, A.M.; El-Latif, M.M.A. Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalination 2011, 278, 412–423. [Google Scholar] [CrossRef]
- Alimohammadi, Z.; Younesi, H.; Bahramifar, N. Batch and column adsorption of reactive red 198 from textile industry effluent by microporous activated carbon developed from walnut shells. Waste Biomass Valorization 2016, 7, 1255–1270. [Google Scholar] [CrossRef]
- Toprak, F.; Armagan, B.; Cakici, A. Systematic approach for the optimal process conditions of Reactive Red 198 adsorption by pistachio nut shell using Taguchi method. Desalin. Water Treat. 2012, 48, 96–105. [Google Scholar] [CrossRef]
- Dincer, A.R.; Gunes, Y.; Karakaya, N. Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution. J. Hazard. Mater. 2007, 141, 529. [Google Scholar] [CrossRef] [PubMed]
- Yaneva, Z.; Koumanova, B. Comparative modeling ofmono- and dinitrophenols sorption on yellow bentonite from aqueous solutions. J. Colloid Interface Sci. 2006, 293, 303–311. [Google Scholar]
- Jabli, M.; Tka, N.; Salman, G.A.; Elaissi, A.; Sebeia, N.; Hamdaoui, M. Rapid interaction, in aqueous media, between anionic dyes and cellulosic Nerium oleander fibers modified with Ethylene-Diamine and Hydrazine. J. Mol. Liq. 2017, 242, 272–283. [Google Scholar] [CrossRef]
- Mazengarb, S.; Roberts, G.A.F. Studies on the diffusion of direct dyes in chitosan film. Prog. Chem. App. Chitin Derivat. 2009, 14, 25–32. [Google Scholar]
- Gucek, A.; Sener, S.; Bilgen, S.; Mazmanci, A. Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions. J. Coll. Interf. Sci. 2005, 286, 53–60. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 1998, 76, 822–827. [Google Scholar] [CrossRef]
- Abdulhameed, A.S.; Jawad, A.H.; Mohammad, A.T. Synthesis of chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles for adsorption of reactive orange 16 dye using a response surface methodology approach. Bioresour. Technol. 2019, 293. [Google Scholar] [CrossRef]
- Temkin, M.I.; Pyzhev, V. Kinetic of ammonia synthesis on promoted iron catalyst. Acta Physiochim. 1940, 12, 327–356. [Google Scholar]
- Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. Calcined magnesite as an adsorbent for cationic and anionic dyes: Characterization, adsorption parameters, isotherms and kinetics study. Heliyon 2018, 4, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljeboree, A.M.; Abbas, N.; Alshirifi, A.N.; Alkaim, A.F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab. J. Chem. 2017, 10, 3381–3393. [Google Scholar] [CrossRef] [Green Version]
Generic Name | Reactive Red 198 |
---|---|
Molecular weight (gmol−1) | 984.21 |
Purity | 90% |
Chromophore | Single azo dye |
λmax (nm) | 550 |
IUPAC Name | Tetrasodium 5-[[4-chloro-6-[[3-[[2-(sulphonatooxy) ethyl] sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3-[(2-sulphonatophenyl)azo]naphthalene-2,7-disulphonate |
Chemical structure |
Adsorbent | qt (mg·g−1) | Adsorption Efficiency (%) | References |
---|---|---|---|
Chitosan | 310.4 | 95.11 | [44] |
Potamogeton crispus | 44.2 | --- | [45] |
O-carboxymethylchitosan-N-lauryl/γ-Fe2O3 magnetic nanoparticles | 216 | --- | [46] |
Pistachio hull wastes | 253.67 | 95.13 | [47] |
Al2O3/MWCNTs Carbon nanotube | 424 | 91.54 | [48] |
Polyaniline/Fe3O4 | 45.45 | 92.1 | [49] |
Eggshell biocomposite beads | 46.9 | 92 | [50] |
Activated Carbon (Walnut Shells) | 79.15 | 87.17 | [51] |
Pistachio nut shell | 108.15 | 88 | [52] |
Chitosan/cellulose PEM | 819 | 99.77 | Current study |
Equations | Parameters | ||
---|---|---|---|
Untreated Cellulose | PEM Bio-Sorbent | ||
Pseudo first order | K1 (min−1) | 0.033 | 0.025 |
qe (mgg−1) | 2013.72 | 155.238 | |
R2 | 0.835 | 0.804 | |
Pseudo second Order | K2 | 0.000816 | 0.00004 |
q | 142.85 | 1000 | |
h | 16.66 | 40 | |
R2 | 0.999 | 0.993 | |
Elovich | α (mgg−1·min−1) | 83.26 | 77.76 |
β (mgg−1·min−1) | 0.044 | 0.0049 | |
R2 | 0.883 | 0.962 | |
Intra-particular- diffusion | K1 (mgg−1·min1/2) | 14.98 | 78.59 |
R2 | 0.591 | 0.894 |
T (°C) | Langmuir | Freundlich | Temkin | Dubinin | Thermodynamic | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KL | qL | R2 | KF | nF | R2 | BT | AT | R2 | qm | E | R2 | ∆G° (KJ Mol−1) | ∆H° (KJ Mol−1) | ∆S° (Jmol−1) | |
22 | 0.025 | 1000 | 0.985 | 54.2 | 2.044 | 0.873 | 458.6 | 0.50 | 0.935 | 556.12 | 2672.6 | 0.56 | 8.73 | −21.09 | −101.098 |
40 | 0.022 | 1000 | 0.993 | 66.52 | 2.409 | 0.979 | 289.5 | 0.88 | 0.956 | 532.18 | 707.1 | 0.675 | 40.37 | ||
60 | 0.0093 | 1000 | 0.899 | 23.6 | 1.724 | 0.945 | 379.1 | 0.448 | 0.967 | 503.20 | 158.11 | 0.68 | 74.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
EL-Ghoul, Y.; Ammar, C.; Alminderej, F.M.; Shafiquzzaman, M. Design and Evaluation of a New Natural Multi-Layered Biopolymeric Adsorbent System-Based Chitosan/Cellulosic Nonwoven Material for the Biosorption of Industrial Textile Effluents. Polymers 2021, 13, 322. https://doi.org/10.3390/polym13030322
EL-Ghoul Y, Ammar C, Alminderej FM, Shafiquzzaman M. Design and Evaluation of a New Natural Multi-Layered Biopolymeric Adsorbent System-Based Chitosan/Cellulosic Nonwoven Material for the Biosorption of Industrial Textile Effluents. Polymers. 2021; 13(3):322. https://doi.org/10.3390/polym13030322
Chicago/Turabian StyleEL-Ghoul, Yassine, Chiraz Ammar, Fahad M. Alminderej, and Md. Shafiquzzaman. 2021. "Design and Evaluation of a New Natural Multi-Layered Biopolymeric Adsorbent System-Based Chitosan/Cellulosic Nonwoven Material for the Biosorption of Industrial Textile Effluents" Polymers 13, no. 3: 322. https://doi.org/10.3390/polym13030322
APA StyleEL-Ghoul, Y., Ammar, C., Alminderej, F. M., & Shafiquzzaman, M. (2021). Design and Evaluation of a New Natural Multi-Layered Biopolymeric Adsorbent System-Based Chitosan/Cellulosic Nonwoven Material for the Biosorption of Industrial Textile Effluents. Polymers, 13(3), 322. https://doi.org/10.3390/polym13030322