Charging of Piezoelectric Cellular Polypropylene Film by Means of a Series Dielectric Layer
Abstract
:1. Introduction
2. Theoretical Modelling
2.1. Samples with Metallized Electrodes vs. Corona Charging
- is the charge supplied by the high-voltage generator.
- is the relative dielectric constant of the polymer.
- is the dielectric constant of vacuum.
- is the porosity of the sample defined as the ratio of the air volume in the sample divided by the total volume of the sample, typically 0.6.
- n is the total number of cells in the thickness of the sample (5 in Figure 2).
- m is the total number of cells where an internal discharge happened (m ≤ n).
- is the surface charge created by internal discharges in the void.
- is the new surface charge provided by the high-voltage supply.
2.2. Dielectric Layer in Series with the Sample
- is the thickness of the new layer.
- is the relative dielectric constant of the additional dielectric layer.
3. Materials and Methods
3.1. Sample Conditioning
3.2. Series Dielectric Layer Electrode
3.3. Piezoelectric Constant Measurement
4. Results and Discussion
4.1. Glass Layer Charging
4.2. Epoxy Resin Electrode Charging
4.3. Estimated Surface Potential and Equivalence with Corona Charging
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirjavainen, K. Electromechanical Film and Procedure Manufacturing Same. U.S. Patent No. 4.654.546, 31 March 1987. Available online: http://www.google.es/patents/US4654546 (accessed on 15 September 2020).
- Sessler, G.M.; Hillenbrand, J. Electromechanical response of cellular electret films. Appl. Phys. Lett. 1999, 75, 3405. [Google Scholar] [CrossRef]
- Paajanen, M.; Välimäki, H.; Lekkala, J. Modelling the electromechanical film (EMFi). J. Electrostat. 2000, 48, 193–204. [Google Scholar] [CrossRef]
- Gerhard-Multhaupt, R. Voided polymer electrets–New materials, new challenges, new chances. In Proceedings of the 11th International Symposium on Electrets, Melbourne, Australia, 1–3 October 2002. [Google Scholar] [CrossRef]
- Lindner, M.; Bauer-Gogonea, S.; Bauer, S.; Paajanen, M.; Raukola, J. Dielectric barrier microdischarges: Mechanism for the charging of cellular piezoelectric polymers. J. Appl. Phys. 2002, 91, 5283–5287. [Google Scholar] [CrossRef]
- Kolgelschatz, U. Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Suwarno, S. Partial Discharge in High Voltage Insulating Materials. Int. J. Electr. Eng. Inform. 2016, 8, 147–163. [Google Scholar] [CrossRef]
- Wegener, M.; Bauer, S. Microstorms in Cellular Polymers: A Route to Soft Piezoelectric Transducer Materials with Engineered Macroscopic Dipoles. ChemPhysChem 2005, 9, 1014–1025. [Google Scholar] [CrossRef] [PubMed]
- Paajanen, M.; Wegener, M.; Gerhard-Multhaupt, R. Understanding the role of the gas in the voids during corona charging of cellular electret films–A way to enhance their piezoelectricity. J. Phys. D Appl. Phys. 2001, 34, 2482–2488. [Google Scholar] [CrossRef]
- Paajanen, M.; Lekkala, J.; Kirjavainen, K. Electro Mechanical Film (EMFi)—A new multipurpose electret material. Sens. Actuators A Phys. 2000, 84, 95–102. [Google Scholar] [CrossRef]
- Sessler, G.M. (Ed.) Electrets. In Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980; Chapter 2.2. [Google Scholar] [CrossRef]
- Wegener, M.; Paajanen, M.; Wirges, W.; Gerhard-Multhaupt, R. Corona-induced partial discharges, internal charge separation and electromechanical transducer properties in cellular polymer films. In Proceedings of the 11th International Symposium on Electrets, Melbourne, Australia, 1–3 October 2002. [Google Scholar] [CrossRef]
- Giacometti, J.A.; Fedosov, S.; Costa, M.M. Corona charging of polymers: Recent advances on constant current charging. Braz. J. Phys. 1999, 29, 269–279. [Google Scholar] [CrossRef]
- Braña, G.O.; Llovera-Segovia, P.; Magraner, F.; Quijano, A. Influence of corona charging in cellular polyethylene film. J. Phys. 2011, 301, 012054. [Google Scholar] [CrossRef] [Green Version]
- Wegener, M.; Wirges, W.; Gerhard-Multhaupt, R.; Dansachmüller, M.; Schwödiauer, R.; Bauer-Gogonea, S.; Bauer, S.; Paajanen, M.; Minkkinen, H.; Raukola, J. Controlled inflation of voids in cellular polymer ferroelectrets: Optimizing electromechanical transducer properties. Appl. Phys. Lett. 2004, 84, 392. [Google Scholar] [CrossRef]
- Hamdi, O.; Mighri, F.; Rodrigue, D. Time and thermal stability improvement of polyethylene ferroelectrets. J. Appl. Polym. Sci. 2019, 136, 47646. [Google Scholar] [CrossRef]
- Paajanen, M.; Karttunen, M.; Kortet, S.; Härkki, O.; Orko, I. Thermally More Durable Electromechanical Films by POSS Nanomodification. Key Eng. Mater. 2013, 538, 65–68. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Chylińska, M.; Klimiec, E.; Królikowski, B.; Sionkowski, G.; Machnik, M. Piezo-electrets from polypropylene composites doped with mineral fillers. Pure Appl. Chem. 2019, 91, 967–982. [Google Scholar] [CrossRef]
- Raizer, Y.P. Gas Discaharge Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Ortega-Braña, G.; Llovera-Segovia, P.; Domínguez-Lagunilla, M.; Quijano-López, A. Relationship between surface potential and d 33 constant in cellular piezoelectric polymers. J. Electrostat. 2017, 88, 94–99. [Google Scholar] [CrossRef]
- Braña, G.O.; Llovera-Segovia, P.; Mor, A.R.; Quijano, A. Characterization and optimization of the d 33 coefficient of cellular PP films. IET Sci. Meas. Technol. 2017, 11, 125–133. [Google Scholar] [CrossRef]
- Hillenbrand, J.; Sessler, G.M. Quasistatic and dynamic piezoelectric coefficients of polymer foams and polymer film systems. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 72–79. [Google Scholar] [CrossRef]
Parameters | d33 Constant | Theoretical Applied Surface Potential | |
---|---|---|---|
Glass | (k = 19.5) , V = 50 kV | 254 pc/N | 7.8 kV |
Epoxy | (k = 4) , V = 30 kV | 650 pc/N | 9.9 kV |
Epoxy | (k = 3) , V = 30 kV | 880 pc/N | 12 kV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llovera-Segovia, P.; Ortega-Braña, G.; Fuster-Roig, V.; Quijano-López, A. Charging of Piezoelectric Cellular Polypropylene Film by Means of a Series Dielectric Layer. Polymers 2021, 13, 333. https://doi.org/10.3390/polym13030333
Llovera-Segovia P, Ortega-Braña G, Fuster-Roig V, Quijano-López A. Charging of Piezoelectric Cellular Polypropylene Film by Means of a Series Dielectric Layer. Polymers. 2021; 13(3):333. https://doi.org/10.3390/polym13030333
Chicago/Turabian StyleLlovera-Segovia, Pedro, Gustavo Ortega-Braña, Vicente Fuster-Roig, and Alfredo Quijano-López. 2021. "Charging of Piezoelectric Cellular Polypropylene Film by Means of a Series Dielectric Layer" Polymers 13, no. 3: 333. https://doi.org/10.3390/polym13030333
APA StyleLlovera-Segovia, P., Ortega-Braña, G., Fuster-Roig, V., & Quijano-López, A. (2021). Charging of Piezoelectric Cellular Polypropylene Film by Means of a Series Dielectric Layer. Polymers, 13(3), 333. https://doi.org/10.3390/polym13030333