Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis
Abstract
:1. Introduction
2. Continuum Mechanics Frame and Magneto-Statics Basis
2.1. Kinematics and Stresses
2.2. Magnetic Field Equations
2.3. Augmented Stored Energy Function and Thermodynamic Analysis
3. Particularization of the Constitutive Model
3.1. Frequency Related Temperature Dependence
3.2. Amplitude Related Temperature Dependence
3.3. Magnetic Dependence of MS Rubber
4. Results and Discussion
4.1. Simulation of the Magnetic, Frequency and Amplitude Dependence
4.2. Simulation of the Temperature Dependence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Implementation of the Elastoplastic Constitutive Branch
Appendix B. Determination of the Magnetic Flux Density Inside MS Rubber
References
- Cantera, M.A.; Behrooz, M.; Gibson, R.F.; Gordaninejad, F. Modeling of magneto-mechanical response of magnetorheological elastomers (MRE) and MRE-based systems: A review. Smart Mater. Struct. 2017, 26, 023001. [Google Scholar] [CrossRef]
- Sun, S.S.; Yang, J.; Yildirim, T.; Ning, D.H.; Zhu, X.J.; Du, H.P.; Zhang, S.W.; Nakano, M.; Li, W.H. A magnetorheological elastomer rail damper for wideband attenuation of rail noise and vibration. J. Intel. Mat. Syst. Str. 2019, 32. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Liang, X.; Gao, Z. Vibration reduction for a flexible arm using magnetorheological elastomer vibration absorber. Shock Vib. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Blom, P.; Kari, L. Smart audio frequency energy flow control by magneto-sensitive rubber isolators. Smart Mater. Struct. 2008, 17, 015043. [Google Scholar] [CrossRef]
- Alberdi-Muniain, A.; Gil-Negrete, N.; Kari, L. Direct energy flow measurement in magneto-sensitive vibration isolator systems. J. Sound Vib. 2012, 331, 1994–2006. [Google Scholar] [CrossRef]
- Alberdi-Muniain, A.; Gil-Negrete, N.; Kari, L. Modelling energy flow through magneto-sensitive vibration isolators. Int. J. Eng. Sci. 2013, 65, 22–39. [Google Scholar] [CrossRef]
- Wang, B.; Kari, L. Modeling and vibration control of a smart vibration isolation system based on magneto-sensitive rubber. Smart Mater. Struct. 2019, 28, 065026. [Google Scholar] [CrossRef]
- Jung, H.J.; Eem, S.H.; Jang, D.D.; Koo, J.H. Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers. J. Intell. Mater. Syst. Struct. 2011, 22, 1439–1450. [Google Scholar] [CrossRef]
- Willey, C.; Chen, V.; Scalzi, K.; Buskohl, P.; Juhl, A. A reconfigurable magnetorheological elastomer acoustic metamaterial. Appl. Phys. Lett. 2020, 117, 104102. [Google Scholar] [CrossRef]
- Harne, R.L.; Deng, Z.; Dapino, M.J. Adaptive magnetoelastic metamaterials: A new class of magnetorheological elastomers. J. Intell. Mater. Syst. Struct. 2018, 29, 265–278. [Google Scholar] [CrossRef]
- Kim, J.; Chung, S.E.; Choi, S.E.; Lee, H.; Kim, J.; Kwon, S. Programming magnetic anisotropy in polymeric microactuators. Nat. Mater. 2011, 10, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Lum, G.Z.; Ye, Z.; Dong, X.; Marvi, H.; Erin, O.; Hu, W.; Sitti, M. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. USA 2016, 113, E6007–E6015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Lum, G.Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Guo, H.; Fu, J.; Xie, Y.; Zhu, M.; Yu, M. 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Compos. Sci. Technol. 2020, 188, 107973. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.M.; Bunoiu, M.; Vatzulik, B.; Juganaru, I. Hybrid magnetorheological elastomer: Influence of magnetic field and compression pressure on its electrical conductivity. J. Ind. Eng. Chem. 2014, 20, 3994–3999. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.; Chirigiu, L. Magnetic field intensity effect on plane capacitors based on hybrid magnetorheological elastomers with graphene nanoparticles. J. Ind. Eng. Chem. 2017, 56, 407–412. [Google Scholar] [CrossRef]
- Wang, X.; Ghafoorianfar, N.; Gordaninejad, F. Study of electrical conductivity in magnetorheological elastomers. In Active and Passive Smart Structures and Integrated Systems 2011; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 7977, p. 797710. [Google Scholar]
- Yun, G.; Tang, S.Y.; Sun, S.; Yuan, D.; Zhao, Q.; Deng, L.; Yan, S.; Du, H.; Dickey, M.D.; Li, W. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Xuan, S.; Ding, L.; Gong, X. Liquid metal circuit based magnetoresistive strain sensor with discriminating magnetic and mechanical sensitivity. Sens. Actuators B Chem. 2020, 314, 128095. [Google Scholar] [CrossRef]
- Ding, L.; Xuan, S.; Pei, L.; Wang, S.; Hu, T.; Zhang, S.; Gong, X. Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges. ACS Appl. Mater. Interfaces 2018, 10, 30774–30784. [Google Scholar] [CrossRef]
- Jolly, M.R.; Carlson, J.D.; Muñoz, B.C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 1996, 5, 607–614. [Google Scholar]
- Zhu, Y.S.; Gong, X.L.; Dang, H.; Zhang, X.Z.; Zhang, P.Q. Numerical analysis on magnetic-induced shear modulus of magnetorheological elastomers based on multi-chain model. Chin. J. Chem. Phys. 2006, 19, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Gong, X.L.; Li, W.H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater. Struct. 2007, 16, 2645. [Google Scholar] [CrossRef]
- Yu, M.; Xia, Y.Q.; Yan, X.R. Analysis and verification on the chain-like model with normal distribution of magnetorheological elastomer. Chin. J. Chem. Phys. 2009, 22, 545. [Google Scholar] [CrossRef]
- Blom, P.; Kari, L. Amplitude and frequency dependence of magneto-sensitive rubber in a wide frequency range. Polym. Test. 2005, 24, 656–662. [Google Scholar] [CrossRef]
- Kou, Y.; Jin, K.; Xu, L.; Zheng, X. A visoelastic constitutive model for magneto-mechanical coupling of magnetorheological elastomers. Smart Mater. Struct. 2017, 26, 115017. [Google Scholar] [CrossRef] [Green Version]
- Brancati, R.; Di Massa, G.; Pagano, S. Investigation on the mechanical properties of mre compounds. Machines 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Nadzharyan, T.; Sorokin, V.; Stepanov, G.; Bogolyubov, A.; Kramarenko, E.Y. A fractional calculus approach to modeling rheological behavior of soft magnetic elastomers. Polymer 2016, 92, 179–188. [Google Scholar] [CrossRef]
- Nadzharyan, T.; Kostrov, S.; Stepanov, G.; Kramarenko, E.Y. Fractional rheological models of dynamic mechanical behavior of magnetoactive elastomers in magnetic fields. Polymer 2018, 142, 316–329. [Google Scholar] [CrossRef]
- Blom, P.; Kari, L. A nonlinear constitutive audio frequency magneto-sensitive rubber model including amplitude, frequency and magnetic field dependence. J. Sound. Vib. 2011, 330, 947–954. [Google Scholar] [CrossRef]
- Wang, B.; Kari, L. A nonlinear constitutive model by spring, fractional derivative and modified bounding surface model to represent the amplitude, frequency and the magnetic dependency for Magneto-sensitive rubber. J. Sound. Vib. 2019, 438, 344–352. [Google Scholar] [CrossRef]
- Lejon, J.; Wang, B.; Kari, L. A non-linear model of the dynamic shear modulus dependence on temperature, prestrain, dynamic strain amplitude and magnetic field for magneto-sensitive rubber. Int. J. Solids Struct. 2012. Manuscript submitted for publication. [Google Scholar]
- Dorfmann, A.; Ogden, R. Magnetoelastic modelling of elastomers. Eur. J. Mech. A. Solids 2003, 22, 497–507. [Google Scholar] [CrossRef]
- Dorfmann, A.; Ogden, R.W. Nonlinear magnetoelastic deformations. Q. J. Mech. Appl. Math. 2004, 57, 599–622. [Google Scholar] [CrossRef]
- Kankanala, S.; Triantafyllidis, N. On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 2004, 52, 2869–2908. [Google Scholar] [CrossRef]
- Danas, K.; Kankanala, S.; Triantafyllidis, N. Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 2012, 60, 120–138. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bodelot, L.; Danas, K. Microstructurally-guided explicit continuum models for isotropic magnetorheological elastomers with iron particles. Int. J. Nonlinear Mech. 2020, 120, 103380. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Hossain, M.; Steinmann, P. A theory of finite deformation magneto-viscoelasticity. Int. J. Solids Struct. 2013, 50, 3886–3897. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Kari, L. A visco-elastic-plastic constitutive model of isotropic magneto-sensitive rubber with amplitude, frequency and magnetic dependency. Int. J. Plast. 2020, 132, 102756. [Google Scholar] [CrossRef]
- Zhao, R.; Kim, Y.; Chester, S.A.; Sharma, P.; Zhao, X. Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids 2019, 124, 244–263. [Google Scholar] [CrossRef]
- Lejon, J.; Kari, L. Measurements on the temperature, dynamic strain amplitude and magnetic field strength dependence of the dynamic shear modulus of magnetosensitive elastomers in a wide frequency range. J. Vib. Acoust. 2013, 135, 064506. [Google Scholar] [CrossRef]
- Zhang, W.; Gong, X.L.; Xuan, S.H.; Jiang, W.Q. Temperature-dependent mechanical properties and model of magnetorheological elastomers. Ind. Eng. Chem. Res. 2011, 50, 6704–6712. [Google Scholar] [CrossRef]
- Wan, Y.; Xiong, Y.; Zhang, S. Temperature effect on viscoelastic properties of anisotropic magnetorheological elastomers under compression. Smart Mater. Struct. 2018, 28, 015005. [Google Scholar] [CrossRef] [Green Version]
- Ferry, J.D. Viscoelastic Encyclopedia of Polymer Science and Engineering Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Hu, X.L.; Luo, W.B.; Liu, X.; Li, M.; Huang, Y.J.; Bu, J.L. Temperature and frequency dependent rheological behaviour of carbon black filled natural rubber. Plast. Rubber Compos. 2013, 42, 416–420. [Google Scholar] [CrossRef]
- Dung, T.; Nhan, N.; Thuong, N.; Viet, D.; Tung, N.; Nghia, P.; Kawahara, S.; Thuy, T. Dynamic mechanical properties of vietnam modified natural rubber via grafting with styrene. Int. J. Polym. Sci. 2017, 2017, 4956102. [Google Scholar] [CrossRef] [Green Version]
- Henriques, I.; Rouleau, L.; Castello, D.; Borges, L.; Deü, J.F. Viscoelastic behavior of polymeric foams: Experiments and modeling. Mech. Mater. 2020, 148, 103506. [Google Scholar] [CrossRef]
- Koeller, R. Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51, 229–307. [Google Scholar] [CrossRef]
- Kari, L.; Eriksson, P.; Stenberg, B. Dynamic stiffness of natural rubber cylinders in the audible frequency range using wave guides. Kautsch. Gummi Kunstst. 2001, 54, 106. [Google Scholar]
- Kari, L. Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Contin. Mech. Thermodyn. 2017, 29, 1027–1046. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.Y.; Hu, X.L.; Song, K. Evaluation of classic and fractional models as constitutive relations for carbon black—Filled rubber. J. Elastom. Plast. 2018, 50, 463–477. [Google Scholar] [CrossRef]
- Medeiros Júnior, W.B.D.; Préve, C.T.; Balbino, F.O.; Silva, T.A.D.; Lopes, E.M.D.O. On an integrated dynamic characterization of viscoelastic materials by fractional derivative and GHM models. Lat. Am. J. Solids Struct. 2019, 16. [Google Scholar] [CrossRef]
- Evans, A.; Rawlings, R. The thermally activated deformation of crystalline materials. Phys. Status Solidi B 1969, 34, 9–31. [Google Scholar] [CrossRef]
- Perzyna, P. Temperature and rate dependent theory of plasticity of crystalline solids. Rev. Phys. Appl. 1988, 23, 445–459. [Google Scholar] [CrossRef]
- Muhr, A. Fitting a viscoplastic time-domain model to equivalent viscoelastic materials data. In Constitutive Models for Rubber VI; CRC Press: Boca Raton, FL, USA, 2009; pp. 147–152. [Google Scholar]
- Vladimirov, I.N.; Pietryga, M.P.; Reese, S. On the modelling of non-linear kinematic hardening at finite strains with application to springback Comparison of time integration algorithms. Int. J. Numer. Meth. Eng. 2008, 75, 1–28. [Google Scholar] [CrossRef]
- Holzapfel, G.A. Nonlinear solid mechanics: A continuum approach for engineering science. Meccanica 2002, 37, 489–490. [Google Scholar] [CrossRef]
- Coleman, B.D.; Gurtin, M.E. Thermodynamics with internal state variables. J. Chem. Phys. 1967, 47, 597–613. [Google Scholar] [CrossRef]
- Tschoegl, N.W.; Knauss, W.G.; Emri, I. The effect of temperature and pressure on the mechanical properties of thermo-and/or piezorheologically simple polymeric materials in thermodynamic equilibrium—A critical review. Mech. Time Depend. Mater. 2002, 6, 53–99. [Google Scholar] [CrossRef]
- Rouleau, L.; Deü, J.F.; Legay, A.; Le Lay, F. Application of Kramers–Kronig relations to time–temperature superposition for viscoelastic materials. Mech. Mater. 2013, 65, 66–75. [Google Scholar] [CrossRef]
- Guedes, R.M. A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time—Temperature superposition principle. Polym. Test. 2011, 30, 294–302. [Google Scholar] [CrossRef]
- Nakano, T. Applicability condition of time–temperature superposition principle (TTSP) to a multi-phase system. Mech. Time Depend. Mater. 2013, 17, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, U.; Hiptmair, F.; Major, Z. Applicability of elastomer time-dependent behavior in dynamic mechanical damping systems. Mech. Time Depend. Mater. 2014, 18, 139–151. [Google Scholar] [CrossRef]
- Marckmann, G.; Verron, E. Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 2006, 79, 835–858. [Google Scholar] [CrossRef] [Green Version]
- Wollscheid, D.; Lion, A. Predeformation-and frequency-dependent material behaviour of filler-reinforced rubber: Experiments, constitutive modelling and parameter identification. Int. J. Solids Struct. 2013, 50, 1217–1225. [Google Scholar] [CrossRef] [Green Version]
- Haupt, P.; Lion, A. On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech. 2002, 159, 87–124. [Google Scholar] [CrossRef]
- Lion, A.; Retka, J.; Rendek, M. On the calculation of predeformation-dependent dynamic modulus tensors in finite nonlinear viscoelasticity. Mech. Res. Commun. 2009, 36, 653–658. [Google Scholar] [CrossRef]
- Van Gurp, M.; Palmen, J. Time-temperature superposition for polymeric blends. Rheol. Bull. 1998, 67, 5–8. [Google Scholar]
- Mark, H.F. Encyclopedia of Polymer Science and Technology, Concise; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Alotta, G.; Barrera, O.; Cocks, A.; Di Paola, M. The finite element implementation of 3D fractional viscoelastic constitutive models. Finite Elem. Anal. Des. 2018, 146, 28–41. [Google Scholar] [CrossRef]
- Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [Google Scholar] [CrossRef]
- Kempfle, S.; Schäfer, I.; Beyer, H. Fractional calculus via functional calculus: Theory and applications. Nonlinear Dyn. 2002, 29, 99–127. [Google Scholar] [CrossRef]
- Kari, L. Are single polymer network hydrogels with chemical and physical cross-links a promising dynamic vibration absorber material? a simulation model inquiry. Materials 2020, 13, 5127. [Google Scholar] [CrossRef]
- Kari, L. Effective visco-elastic models of tough, doubly cross-linked, single-network polyvinyl alcohol (PVA) hydrogels. Contin. Mech. Thermodyn. 2020, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dafalias, Y.F.; Popov, E.P. Cyclic loading for materials with a vanishing elastic region. Nucl. Eng. Des. 1977, 41, 293–302. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Abu-Lebdeh, T.M. Plasticity model for concrete using the bounding surface concept. Int. J. Plast. 1994, 10, 1–21. [Google Scholar] [CrossRef]
- Andrianopoulos, K.I.; Papadimitriou, A.G.; Bouckovalas, G.D. Bounding surface plasticity model for the seismic liquefaction analysis of geostructures. Soil. Dyn. Earthq. Eng. 2010, 30, 895–911. [Google Scholar] [CrossRef]
- Mróz, Z.; Shrivastava, H.P.; Dubey, R.N. A non-linear hardening model and its application to cyclic loading. Acta Mech. 1976, 25, 51–61. [Google Scholar] [CrossRef]
- Raemy, C.; Manopulo, N.; Hora, P. On the modelling of plastic anisotropy, asymmetry and directional hardening of commercially pure titanium: A planar Fourier series based approach. Int. J. Plast 2017, 91, 182–204. [Google Scholar] [CrossRef]
- Österlöf, R.; Wentzel, H.; Kari, L. A finite strain viscoplastic constitutive model for rubber with reinforcing fillers. Int. J. Plast. 2016, 87, 1–14. [Google Scholar] [CrossRef]
- Eidel, B.; Gruttmann, F. Elastoplastic orthotropy at finite strains: Multiplicative formulation and numerical implementation. Comput. Mater. Sci. 2003, 28, 732–742. [Google Scholar]
- Simo, J.C.; Hughes, T.J. Computational Inelasticity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 7. [Google Scholar]
- Eterovic, A.L.; Bathe, K.J. A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int. J. Numer. Meth. Eng. 1990, 30, 1099–1114. [Google Scholar] [CrossRef]
Substance | Parts per Hundred Rubber |
---|---|
Natural rubber | 100 |
Zinc oxide | 6 |
Stearine | 0.5 |
Sulphur | 3.5 |
Mercaptobenzothiazole | 0.5 |
Hydrocarbon oil | 40 |
Nytex 480 plasticizer | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Kari, L. Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis. Polymers 2021, 13, 472. https://doi.org/10.3390/polym13030472
Wang B, Kari L. Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis. Polymers. 2021; 13(3):472. https://doi.org/10.3390/polym13030472
Chicago/Turabian StyleWang, Bochao, and Leif Kari. 2021. "Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis" Polymers 13, no. 3: 472. https://doi.org/10.3390/polym13030472
APA StyleWang, B., & Kari, L. (2021). Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis. Polymers, 13(3), 472. https://doi.org/10.3390/polym13030472