One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Direct Photolithographic Methods
2.3. Optical Simulations
2.4. Characterization
2.4.1. Image Analysis
2.4.2. Scanning Electron Microscopy
2.4.3. Indentation and Injection Proof
3. Results
3.1. Optical Simulations
3.1.1. SHMNs
3.1.2. AHMNs
3.2. Device Fabrication Results
3.2.1. SHMNs
3.2.2. AHMNs
3.3. Indentation and Injection Proof
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle Arrays as Transdermal and Intradermal Drug De-Livery Systems: Materials Science, Manufacture and Commercial Development. Mater. Sci. Eng. 2016, 104, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Anirudhan, T.S.; Nair, S.S. Development of Voltage Gated Transdermal Drug Delivery Platform to Impose Synergistic En-Hancement in Skin Permeation Using Electroporation and Gold Nanoparticle. Mater. Sci. Eng. 2019, 102, 437–446. [Google Scholar] [CrossRef]
- Chu, L.Y.; Prausnitz, M.R. Separable Arrowhead Microneedles. J. Control Release 2011, 149, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xiang, Z.; Hu, C.-F.; Pastorin, G.; Fang, W.; Lee, C. Microneedle Array Integrated with CNT Nanofilters for Con-Trolledand Selective Drug Delivery. J. Microelectromech. Syst. 2014, 23, 1036–1044. [Google Scholar] [CrossRef]
- Montagna, W.; Kligman, A.M.; Carlisle, K.S. Blood Vessels. In Atlas of Normal Human Skin; Springer: New York, NY, USA, 1992. [Google Scholar]
- Pasut, G.; Veronese, F. Polymer–drug Conjugation, Recent Achievements and General Strategies. Prog. Polym. Sci. 2007, 32, 933–961. [Google Scholar] [CrossRef]
- Tran, B.Q.; Miller, P.R.; Taylor, R.M.; Boyd, G.; Mach, P.M.; Rosenzweig, C.N.; Baca, J.T.; Polsky, R.; Glaros, T. Proteomic Characterization of Dermal Interstitial Fluid Extracted Using a Novel Microneedle-Assisted Technique. J. Proteome Res. 2018, 17, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Ranamukhaarachchi, S.A.; Padeste, C.; Dübner, M.; Häfeli, U.O.; Stoeber, B.; Cadarso, V.J. Integrated Hollow Microneedle-Optofluidic Biosensor for Therapeutic Drug Monitoring in Sub-Nanoliter Volumes. Sci. Rep. 2016, 6, 29075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurgate, C.; Heppell, S. Needle Phobia—Changing Venepuncture Practice in Ambulatory Care. Paediatr. Nurs. 2005, 17, 15–18. [Google Scholar] [CrossRef]
- Kaushik, S.; Hord, A.H.; Denson, D.D.; McAllister, D.V.; Smitra, S.; Allen, M.G.; Prausnitz, M.R. Lack of Pain Associated with Microfabricated Microneedles. Anesthesia Analg. 2001, 92, 502–504. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.D.; Wang, Q.L.; Liu, X.B.; Guo, X.D. Rapidly Separating Microneedles for Transdermal Drug Delivery. Acta Biomater. 2016, 41, 312–319. [Google Scholar] [CrossRef]
- Wilke, N.; Mulcahy, A.; Ye, S.-R.; Morrissey, A. Process Optimization and Characterization of Silicon Microneedles Fabricated by Wet Etch Technology. Microelectron. J. 2005, 36, 650–656. [Google Scholar] [CrossRef]
- Hansel, C.S.; Crowder, S.W.; Cooper, S.; Gopal, S.; João Pardelha Da Cruz, M.; De Oliveira Martins, L.; Keller, D.; Rothery, S.; Becce, M. Nanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery. ACS Nano 2019, 13, 2913–2926. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Zhou, Y.; Chen, Z.; Jiang, L.; Yuan, W.; Liang, L. Fabrication of a Ti Porous Microneedle Array by Metal Injection Molding for Transdermal Drug Delivery. PLoS ONE 2017, 12, e0172043. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Jung, H. Drawing Lithography for Microneedles: A Review of Fundamentals and Biomedical Applica-tions. Biomaterials 2012, 33, 7309–7326. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, S.; Kang, G.; Lahiji, S.F.; Jang, M.; Mi, Y.; Jae-Myung, K.; Sang-Nae, K.; Jung, C.H. Centrifugal Lithography: Self-Shaping of Polymer Microstructures Encapsulating Biopharmaceutics by Centrifuging Polymer Drops. Adv. Healthc. Mater. 2017, 6, 19. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wang, F.Y.; Chan, Y.S.; Huang, Y.Y. Fabrication of Hollow Microneedle Patch with Controllable Micro-Structure for Cell Therapy. Available online: https://ssrn.com/abstract=3757907 (accessed on 8 February 2021). [CrossRef]
- Yeung, C.; Chen, S.; King, B.; Lin, H.; King, K.; Akhtar, F.; Diaz, G.; Wang, B.; Zhu, J.; Sun, W.; et al. A 3D-Printed Microfluidic-Enabled Hollow Microneedle Architecture for Transdermal Drug Delivery. Biomicrofluidics 2019, 13, 064125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.; Ngo, T.A.; Bang, D.D.; Wolff, A. Optimising the Supercritical Angle Fluorescence Structures in Polymer Microfluidic Biochips for Highly Sensitive Pathogen Detection: A Case Study on Escherichia Coli. Lab Chip 2019, 19, 3825–3833. [Google Scholar] [CrossRef] [Green Version]
- Dardano, P.; Battisti, M.; De Martino, S.; Rea, I.; Miranda, B.; Nicolais, L.; De Stefano, L. Theranostic Microneedle Devices: Innovative Biosensing and Transdermal Drugs Administration. In Biosensor—Current and Novel Strategies for Biosensing; IntechOpen Limited: London, UK, 2020. [Google Scholar] [CrossRef]
- Daugimont, L.; Baron, N.; Vandermeulen, G.; Pavselj, N.; Miklavcic, D.; Jullien, M.-C.; Cabodevila, G.; Mir, L.M.; Préat, V. Hollow Microneedle Arrays for Intradermal Drug Delivery and DNA Electroporation. J. Membr. Biol. 2010, 236, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Li, C.G.; Joung, H.A.; Noh, H.; Song, M.B.; Kim, M.G.; Jung, H. One-Touch-Activated Blood Multidiagnostic Sys-Tem Using a Minimally Invasive Hollow Microneedle Integrated with a Paper-Based Sensor. Lab Chip 2015, 15, 3286–3292. [Google Scholar] [CrossRef]
- Yung, K.L.; Xu, Y.; Kang, C.; Liu, H.; Tam, K.F.; Ko, S.M.; Kwan, F.Y.; Lee, T.M.H. Sharp Tipped Plastic Hollow Microneedle Array by Microinjection Moulding. J. Micromech. Microeng. 2011, 22, 015016. [Google Scholar] [CrossRef]
- Dardano, P.; Battisti, M.; Rea, I.; Serpico, L.; Terracciano, M.; Cammarano, A.; Nicolais, L.; De Stefano, L. Polymeric Microneedle Arrays: Versatile Tools for an Innovative Approach to Drug Administration. Adv. Ther. 2019, 2, 1900036. [Google Scholar] [CrossRef]
- Dardano, P.; Rea, I.; De Stefano, L. Microneedles-Based Electrochemical Sensors: New Tools for Advanced Biosens-Ing. Curr. Opin. Electrochem. 2019, 17, 121–127. [Google Scholar] [CrossRef]
- Caliò, A.; Dardano, P.; Di Palma, V.; Bevilacqua, M.F.; Di Matteo, A.; Iuele, H.; De Stefano, L. Polymeric Mi-Croneedles Based Enzymatic Electrodes for Electrochemical Biosensing of Glucose and Lactic Acid. Sens. Actuators B Chem. 2016, 236, 343–349. [Google Scholar] [CrossRef]
- Dardano, P.; Caliò, A.; Politi, J.; Rea, I.; Rendina, I.; De Stefano, L. Optically Monitored Drug Delivery Patch Based on Porous Silicon and Polymer Microneedles. Biomed. Opt. Express 2016, 7, 1645–1655. [Google Scholar] [CrossRef] [Green Version]
- Dardano, P.; Caliò, A.; Di Palma, V.; Bevilacqua, M.F.; Di Matteo, A.; De Stefano, L. A Photolithographic Ap-Proach to Polymeric Microneedles Array Fabrication. Materials 2015, 8, 8661–8673. [Google Scholar] [CrossRef] [Green Version]
- Mellott, M.B.; Searcy, K.; Pishko, M.V. Release of Protein from Highly Cross-Linked Hydrogels of poly(ethylene Glycol) Diacry-Late Fabricated by UV Polymerization. Biomaterials 2001, 22, 929–941. [Google Scholar] [CrossRef]
- Kalakkunnath, S.; Kalika, D.S.; Lin, H.; Freeman, B.D. Viscoelastic Characteristics of UV Polymerized Poly (eth-Ylene Glycol) Diacrylate Networks with Varying Extents of Crosslinking. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 2058–2070. [Google Scholar] [CrossRef]
- Kochhar, J.S.; Goh, W.J.; Chan, S.Y.; Kang, L. A Simple Method of Microneedle Array Fabrication for Transdermal Drug Deliv-Ery. Drug Dev. Ind. Pharm. 2013, 39, 299–309. [Google Scholar] [CrossRef]
- Tsioris, K.; Raja, W.K.; Pritchard, E.M.; Panilaitis, B.; Kaplan, D.L.; Omenetto, F.G. Fabrication of Silk Microneedles for Controlled-Release Drug Delivery. Adv. Funct. Mater. 2012, 22, 330–335. [Google Scholar] [CrossRef]
Time (s) | Height (μm) | ||
---|---|---|---|
hS 1 | hA1 2 | hA2 2 | |
3 | 160 | 0 | |
5 | 610 | 0 | |
7 | 100 | ||
9 | 150–240 | 1360 | 240 |
13 | 1000 | ||
18 | 1500 | 1780 | 1780 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dardano, P.; De Martino, S.; Battisti, M.; Miranda, B.; Rea, I.; De Stefano, L. One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers 2021, 13, 520. https://doi.org/10.3390/polym13040520
Dardano P, De Martino S, Battisti M, Miranda B, Rea I, De Stefano L. One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers. 2021; 13(4):520. https://doi.org/10.3390/polym13040520
Chicago/Turabian StyleDardano, Principia, Selene De Martino, Mario Battisti, Bruno Miranda, Ilaria Rea, and Luca De Stefano. 2021. "One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography" Polymers 13, no. 4: 520. https://doi.org/10.3390/polym13040520
APA StyleDardano, P., De Martino, S., Battisti, M., Miranda, B., Rea, I., & De Stefano, L. (2021). One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers, 13(4), 520. https://doi.org/10.3390/polym13040520