Preparation and Performance of Supercritical Carbon Dioxide Thickener
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Studio Simulation
2.2. Synthesis and Characterization of the Hyperbranched D4H
2.2.1. H NMR Measurements
2.2.2. FT-IR Measurements
2.2.3. GPC Measurements
2.2.4. Differential Scanning Calorimetry
2.2.5. Viscosity Measurement
2.2.6. Cloud Point Measurement
2.2.7. Core Damage Measurements
3. Results and Discussion
3.1. Materials Studio Computational Simulation
3.1.1. Interaction Energy Calculation
3.1.2. Cohesive Energy Density and Solubility Parameter
3.1.3. Radial Distribution Function (RDF)
3.2. Structural Characterization of HBD-1 and HBD-2
3.3. Glass Transition Temperature and Molecular Weight Analysis
3.4. Cloud Point and Viscosity of HBD-1 and HBD-2 in SC–CO2
3.4.1. Cloud Point and Phase Behavior of HBD-1 and HBD-2 in SC–CO2
3.4.2. The Influence of Temperature on the Apparent Viscosity of HBD-1 and HBD-2 in SC–CO2
3.4.3. The Influence of Pressure on the Apparent Viscosity of HBD-1 and HBD-2 in SC–CO2
3.4.4. The Influence of Shear Rate on the Apparent Viscosity of HBD-1 and HBD-2 in SC–CO2
3.4.5. The Influence of Thickener Content on the Apparent Viscosity of HBD-1 and HBD-2 in SC–CO2
3.5. Core Damage
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
References
- Middleton, R.S.; Carey, J.W.; Currier, R.P.; Hyman, J.D.; Kang, Q.J.; Karra, S.; Jimenez-Martinez, J.; Porter, M.L.; Viswanathan, H.S. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Appl. Energy 2015, 147, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Middleton, R.S.; Gupta, R.; Hyman, J.D.; Viswanathan, H.S. The shale gas revolution: Barriers, sustainability, and emerging opportunities. Appl. Energy 2017, 199, 88–95. [Google Scholar] [CrossRef]
- Sampath, K.H.S.M.; Perera, M.S.A.; Ranjith, P.G.; Matthai, S.K.; Rathnaweera, T.; Zhang, G.; Tao, X. CH4-CO2 gas exchange and supercritical CO2 based hydraulic fracturing as CBM production-accelerating techniques: A review. J. CO2 Util. 2017, 22, 212–230. [Google Scholar] [CrossRef]
- Ao, X.; Lu, Y.Y.; Tang, J.R.; Chen, Y.T.; Li, H.L. Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2. J. CO2 Util. 2017, 20, 274–281. [Google Scholar] [CrossRef]
- Gordalla, B.C.; Ewers, U.; Frimmel, F.H. Hydraulic fracturing: A toxicological threat for groundwater and drinking-water. Environ. Earth Sci. 2013, 70, 3875–3893. [Google Scholar] [CrossRef]
- Estrada, J.M.; Bhamidimarri, R. A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel 2016, 182, 292–303. [Google Scholar] [CrossRef]
- Liu, M.; Shabaninejad, M.; Mostaghimi, P. Impact of mineralogical heterogeneity on reactive transport modelling. Comput. Geosci. 2017, 104, 12–19. [Google Scholar] [CrossRef]
- Zhou, G.-G.; Chen, J.-G.; Wang, M.-X.; Zhang, M.; Guo, J.-L.; Shen, S.; Liu, Z.-T.; Liu, Z.-W.; Jiang, J.; Lu, J. Insight into the role of intermolecular interactions on the enhanced solubility of fluorinated epoxide oligomers in supercritical CO2. Green Chem. 2015, 17, 4489–4498. [Google Scholar] [CrossRef]
- Desimone, J.; Guan, Z.; Elsbernd, C. Synthesis of fluoropolymers in supercritical carbon-dioxide. Science 1992, 257, 945. [Google Scholar] [CrossRef]
- Huang, Z.; Shi, C.; Xu, J.; Kilic, S.; Enick, R.M.; Beckman, E.J. Enhancement of the viscosity of carbon dioxide using styrene/fluoroacrylate copolymers. Macromolecules 2000, 33, 5437–5442. [Google Scholar] [CrossRef]
- Sun, B.; Sun, W.; Wang, H.; Li, Y.; Fan, H.; Li, H.; Chen, X. Molecular simulation aided design of copolymer thickeners for supercritical CO2 as non-aqueous fracturing fluid. J. CO2 Util. 2018, 28, 107–116. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Yang, Q.; Niu, H.; Liu, Q. Preliminary investigation on cytotoxicity of fluorinated polymer nanoparticles. J. Environ. Sci. 2017. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.J.; Perry, R.J.; Doherty, M.D.; Lee, J.J.; Dhuwe, A.; Beckman, E.J.; Enick, R.M. Anthraquinone siloxanes as thickening agents for supercritical CO2. Energy Fuels 2016, 30, 5990–5998. [Google Scholar] [CrossRef]
- Du, M.; Sun, X.; Dai, C.; Li, H.; Wang, T.; Xu, Z.; Zhao, M.; Guan, B.; Liu, P. Laboratory experiment on a toluene-polydimethyl silicone thickened supercritical carbon dioxide fracturing fluid. J. Pet. Sci. Eng. 2018, 166, 369–374. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Q.; Foster, G.; Lei, C. Study on the optimization of silicone copolymer synthesis and the evaluation of its thickening performance. RSC Adv. 2018, 8, 8770–8778. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Q.; Dong, W.; Li, Q.; Wang, F.; Bai, H.; Zhang, R.; Owusu, A.B. Effect of different factors on the yield of epoxy-terminated polydimethylsiloxane and evaluation of CO2 thickening. RSC Adv. 2018, 8, 39787–39796. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, Y.; Wang, X.; Yu, H.; Li, Q.; Wang, F.; Bai, H.; Kobina, F. An application of thickener to increase viscosity of liquid CO2 and the assessment of the reservoir geological damage and CO2 utilization. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 368–377. [Google Scholar]
- Llave, F.M.; Chung, T.H.; Burchfield, T.E. Use of entrainers in improving mobility control of supercritical CO sub 2. SPE Reserv. Eng. 1990, 5, 47–51. [Google Scholar] [CrossRef]
- Zhang, S.; She, Y.; Gu, Y. Evaluation of polymers as direct thickeners for CO2 enhanced oil recovery. J. Chem. Eng. Data 2011, 56, 1069–1079. [Google Scholar] [CrossRef]
- Hu, D.; Sun, S.; Yuan, P.; Zhao, L.; Liu, T. Evaluation of CO2-philicity of poly(vinyl acetate) and poly(vinyl acetate-alt-maleate) copolymers through molecular modeling and dissolution behavior measurement. J. Phys. Chem. B 2015, 119, 3194–3204. [Google Scholar] [CrossRef]
- Hu, D.; Sun, S.; Yuan, P.-Q.; Zhao, L.; Liu, T. Exploration of CO2-philicity of poly(vinyl acetate-co-alkyl vinyl ether) through molecular modeling and dissolution behavior measurement. J. Phys. Chem. B 2015, 119, 12490–12501. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, Y.; Su, M.; Bao, L.; Zhao, L.; Liu, T. Effect of molecular weight on CO2-philicity of poly(vinyl acetate) with different molecular chain structure. J. Supercrit. Fluids 2016, 118, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.J.; Han, H.M.; Jing, W.; Xiao, S.J.; Dai, Z.D. Surface-hydrophilic and protein-resistant silicone elastomers prepared by hydrosilylation of vinyl poly(ethylene glycol) on hydrosilanes-poly(dimethylsiloxane) surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2007, 308, 129–135. [Google Scholar] [CrossRef]
- Girard, E.; Tassaing, T.; Ladavière, C.; Marty, J.-D.; Destarac, M. Distinctive features of solubility of RAFT/MADIX-derived partially trifluoromethylated poly(vinyl acetate) in supercritical CO2. Macromolecules 2012, 45, 9674–9681. [Google Scholar] [CrossRef]
- Birkin, N.A.; Wildig, O.J.; Howdle, S.M. Effects of poly(vinyl pivalate)-based stabiliser architecture on CO2-solubility and stabilising ability in dispersion polymerisation of N-vinyl pyrrolidone. Polym. Chem. 2013, 4, 3791–3799. [Google Scholar] [CrossRef] [Green Version]
- Tarhan, İ. A comparative study of ATR-FTIR, UV–visible and fluorescence spectroscopy combined with chemometrics for quantification of squalene in extra virgin olive oils. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 241, 118714. [Google Scholar] [CrossRef] [PubMed]
- Batzer, H.; Zahir, S.A.C. Studies in the molecular weight distribution of epoxide resins. I. Gel permeation chromatography of epoxide resins. J. Appl. Polym. Sci. 1975, 19, 585–600. [Google Scholar] [CrossRef]
- Tan, B.; Bray, C.L.; Cooper, A.I. Fractionation of poly(vinyl acetate) and the phase behavior of end-group modified oligo(vinyl acetate)s in CO2. Macromolecules 2009, 42, 7945–7952. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, Y.; Yang, H.; Yang, H.-J.; Tan, B. Functional oligo(vinyl acetate) bearing bipyridine moieties by RAFT polymerization and extraction of metal ions in supercritical carbon dioxide. Polym. Chem. 2013, 4, 3507–3513. [Google Scholar] [CrossRef]
- Jennings, J.; Bassett, S.P.; Hermida-Merino, D.; Portale, G.; Bras, W.; Knight, L.; Titman, J.J.; Higuchi, T.; Jinnai, H.; Howdle, S.M. How does dense phase CO2 influence the phase behaviour of block copolymers synthesised by dispersion polymerisation? Polym. Chem. 2016, 7, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Cummings, S.; Xing, D.; Enick, R.; Rogers, S.; Heenan, R.; Grillo, I.; Eastoe, J. Design principles for supercritical CO2 viscosifiers. Soft Matter 2012, 8, 7044–7055. [Google Scholar] [CrossRef]
- Aycaguer, A.-C.; Lev-On, M.; Winer, A.M. Reducing carbon dioxide emissions with enhanced oil recovery projects: A Life cycle assessment approach. Energy Fuels 2001, 15, 303–308. [Google Scholar] [CrossRef]
- Raveendran, P.; Wallen, S.L. Sugar acetates as novel, renewable CO(2)-philes. J. Am. Chem. Soc. 2002, 124, 7274–7275. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Are solubility parameters relevant to supercritical fluids? J. Supercrit. Fluids 2006, 38, 7–12. [Google Scholar] [CrossRef]
- Defelice, J.; Lipson, J.E.G. Polymer miscibility in supercritical carbon dioxide: Free volume as a driving force. Macromolecules 2014, 47, 5643–5654. [Google Scholar] [CrossRef]
- Lee, H.; Pack, J.W.; Wang, W.; Thurecht, K.J.; Howdle, S.M. Synthesis and phase behavior of CO2-soluble hydrocarbon copolymer: Poly(vinyl acetate-alt-dibutyl maleate). Macromolecules 2010, 43, 2276–2282. [Google Scholar] [CrossRef]
- Gestoso, P.; Brisson, J. Towards the simulation of poly(vinyl phenol)/poly(vinyl methyl ether) blends by atomistic molecular modelling. Polymer 2003, 44, 2321–2329. [Google Scholar] [CrossRef]
- Fu, Y.; Liao, L.; Yang, L.; Lan, Y.; Mei, L.; Liu, Y.; Hu, S. Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends. Mol. Simul. 2013, 39, 415–422. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Drohmann, C.; Beckman, E.J. Phase behavior of polymers containing ether groups in carbon dioxide. J. Supercrit. Fluids 2002, 22, 103–110. [Google Scholar] [CrossRef]
- Malhotra, S.L.; Lessard, P.; Blanchard, L.P. The thermal decomposition and glass transition temperature of poly(p-tert-butyistyrene). J. Macromol. Sci. Part A Chem. 2012, 15, 121–141. [Google Scholar] [CrossRef]
- Gu, Y.; Kar, T.; Scheiner, S. Fundamental properties of the CH···O interaction: Is it a true hydrogen bond? J. Am. Chem. Soc. 1999, 121, 9411–9422. [Google Scholar] [CrossRef]
- Raveendran, P.; Wallen, S.L. Cooperative C-H···O hydrogen bonding in CO2—lewis base complexes: Implications for solvation in supercritical CO2. J. Am. Chem. Soc. 2002, 124, 12590–12599. [Google Scholar] [CrossRef] [PubMed]
- Ginderen, P.; Herrebout, W.; van der Veken, B. van der Waals complex of dimethyl ether with carbon dioxide. J. Phys. Chem. A 2003, 107, 5391–5396. [Google Scholar] [CrossRef]
- Rindfleisch, F.; Dinoia, T.P.; McHugh, M.A. Solubility of polymers and copolymers in supercritical CO2. J. Phys. Chem. 1996, 100, 15581–15587. [Google Scholar] [CrossRef]
- Bae, J.H.; Irani, C.A. A laboratory investigation of viscosified CO2 process. SPE Adv. Technol. 1993, 1, 166–171. [Google Scholar] [CrossRef]
- Luo, X.; Wang, S.; Wang, Z.; Jing, Z.; Lv, M.; Zhai, Z.; Han, T. Experimental investigation on rheological properties and friction performance of thickened CO2 fracturing fluid. J. Pet. Sci. Eng. 2015, 133, 410–420. [Google Scholar] [CrossRef]
- Doherty, M.D.; Lee, J.J.; Dhuwe, A.; O’Brien, M.J.; Perry, R.J.; Beckman, E.J.; Enick, R.M. Small molecule cyclic amide and urea based thickeners for organic and SC–CO2/organic solutions. Energy Fuels 2016, 30, 5601–5610. [Google Scholar] [CrossRef]
- Kilic, S.; Michalik, S.; Wang, Y.; Johnson, J.K.; Enick, R.M.; Beckman, E.J. Effect of grafted lewis base groups on the phase behavior of model poly(dimethyl siloxanes) in CO2. Ind. Eng. Chem. Res. 2003, 42, 6415–6424. [Google Scholar] [CrossRef]
- Tsukahara, T.; Kayaki, Y.; Ikariya, T.; Ikeda, Y. 13C NMR spectroscopic evaluation of the affinity of carbonyl compounds for carbon dioxide under supercritical conditions. Angew. Chem. Int. Ed. 2004, 43, 3719–3722. [Google Scholar] [CrossRef]
- Reinicke, A.; Rybacki, E.; Stanchits, S.; Huenges, E.; Dresen, G. Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone–proppant systems. Geochemistry 2010, 70, 107–117. [Google Scholar] [CrossRef]
- Civan, F. Reservoir Formation Damage; Gulf Professional Pub.: Houston, TX, USA, 2007. [Google Scholar]
System | Epolymer-CO2/kJ·mol−1 | Epolymer/kJ·mol−1 | ECO2/kJ·mol−1 | Einter/kJ·mol−1 |
---|---|---|---|---|
Poly HBD-1 and SC–CO2 | −4525.25 | −5937.54 | 1910.17 | −497.88 |
Poly HBD-2 and SC–CO2 | −4727.68 | −5734.77 | 1910.17 | −903.08 |
System | CED/(J/m3) | δ/(J/cm3)1/2 | |∆δ|/(J/cm3)1/2 |
---|---|---|---|
PolyHBD-1-CO2 | 2.08 × 108 | 14.42 | 1.08 |
PolyHBD-2-CO2 | 1.79 × 108 | 13.38 | 0.04 |
CO2 | 1.78 × 108 | 13.34 | 0 |
δ/ppm | Type of H | |
---|---|---|
HBD–1 | 0.19 | Si–CH3 |
1.70–1.78 | Si–CH2–CH–CH3 O=C–CH(CH3)–CH2 | |
4.16–4.21 | –O–CH2–CH2–O– | |
4.5 | Si–H | |
7.39 | CDCl3 | |
HBD–2 | 0.19 | Si–CH3 |
0.83 | (CH2)3–;C–CH2–CH3 | |
1.63–1.85 | (CH2)3–C–CH2–CH3 O=C–CH–(CH3)2 O=C–CH=CH2 O=C–CH(CH2Si) –CH3 | |
2.3–2.4 | O–C–CH–(CH3)2 O=C–CH(CH2Si)–CH3 | |
4.15–4.23 | (CH2)3–C–CH2–CH3 | |
4.5 | Si–H | |
6.02–6.4 | O=C–CH=CH2 | |
7.39 | CDCl3 |
Molecular Weights (MP) | Polymerization Degree | |
---|---|---|
HBD-1 | 7552 | 17 |
HBD-2 | 7076 | 16 |
Type of Thickener | HBD-1 | HBD-2 | ||||
---|---|---|---|---|---|---|
Core number | 1 | 2 | 3 | 4 | 5 | 6 |
Permeability/10−3 μm2 | 14 | 18 | 20 | 13.4 | 12 | 13.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Wang, Y.; Liang, L. Preparation and Performance of Supercritical Carbon Dioxide Thickener. Polymers 2021, 13, 78. https://doi.org/10.3390/polym13010078
Liu B, Wang Y, Liang L. Preparation and Performance of Supercritical Carbon Dioxide Thickener. Polymers. 2021; 13(1):78. https://doi.org/10.3390/polym13010078
Chicago/Turabian StyleLiu, Bin, Yanling Wang, and Lei Liang. 2021. "Preparation and Performance of Supercritical Carbon Dioxide Thickener" Polymers 13, no. 1: 78. https://doi.org/10.3390/polym13010078
APA StyleLiu, B., Wang, Y., & Liang, L. (2021). Preparation and Performance of Supercritical Carbon Dioxide Thickener. Polymers, 13(1), 78. https://doi.org/10.3390/polym13010078