UHMWPE/CaSiO3 Nanocomposite: Mechanical and Tribological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Wollastonite
2.2. Obtaining Polymer Composite Materials (PCMs)
2.3. Methods of Analysis
3. Results and Discussion
3.1. Synthesis of Wollastonite
3.2. Description of Properties of PCM
3.2.1. Morphology of PCM
3.2.2. Mechanical Properties of PCM
3.2.3. Thermodynamic Properties of PCM
3.2.4. Tribological Properties of PCM
3.2.5. Investigation of the Friction Surface of PCM
Wear Surface Morphology
Fourier Transform Infrared (FTIR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurdi, A.; Chang, L. Recent advances in high performance polymers-Tribological aspects. Lubricants 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Kurdi, A.; Wang, H.; Chang, L. Effect of nano-sized TiO2 addition on tribological behavior of poly ether ether ketone composite. Tribol. Int. 2018, 117, 225–235. [Google Scholar] [CrossRef]
- Friedrich, K.; Zhang, Z.; Schlarb, A.K. Effects of various fillers on the sliding wear of polymer composites. Compos. Sci. Technol. 2005, 65, 2329–2343. [Google Scholar] [CrossRef]
- Huang, R.; Xu, X.; Lee, S.; Zhang, Y.; Kim, B.-J.; Wu, Q. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance. Materials 2013, 6, 4122–4138. [Google Scholar] [CrossRef] [Green Version]
- Panin, S.V.; Kornienko, L.; Thuc, N.X.; Ivanova, L.R.; Shilko, S.V. Role of micro- and nanofillers in abrasive wear of composites based on ultra-high molecular weight polyethylene. Adv. Mater. Res. 2014, 1040, 148–154. [Google Scholar] [CrossRef]
- Nikiforov, L.A.; Okhlopkova, T.A.; Kapitonova, I.V.; Sleptsova, S.A.; Okhlopkova, A.A.; Shim, E.L.; Cho, J.H. Surfactant effects on structure and mechanical properties of ultrahigh-molecular-weight polyethylene/layered silicate composites. Molecules 2017, 22, 2149. [Google Scholar] [CrossRef] [Green Version]
- Okhlopkova, T.A.; Borisova, R.V.; Nikiforov, L.A.; Spiridonov, A.M.; Sharin, P.P.; Okhlopkova, A.A. Technology of liquid-phase compounding of ultra-high-molecular-weight polyethylene with nanoparticles of inorganic compounds under the action of ultrasonic vibrations. Russ. J. Appl. Chem. 2016, 89, 1469–1476. [Google Scholar] [CrossRef]
- Okhlopkova, A.A.; Borisova, R.V.; Okhlopkova, T.A.; Nikiforov, L.A. Structure and friction behavior of UHMWPE/inorganic nanoparticles. Key Eng. Mater. 2015, 670, 69–75. [Google Scholar] [CrossRef]
- Mokhtar, I.; Yahya, M.Y.; Kadir, M.R.A.; Kambali, M.F. Effect on Mechanical Performance of UHMWPE/HDPE-Blend Reinforced with Kenaf, Basalt and Hybrid Kenaf/Basalt Fiber. Polym. Plast. Technol. Eng. 2013, 52, 1140–1146. [Google Scholar] [CrossRef]
- Panin, S.V.; Huang, Q.; Kornienko, L.A.; Buslovich, D.G.; Alexenko, V.O. Effect of UHMWPE powder size onto tribological and mechanical properties of composites loaded with functionalized chopped glass fibers. AIP Conf. Proc. 2019, 2167, 1–6. [Google Scholar]
- Kirillina, I.V.; Nikiforov, L.A.; Okhlopkova, A.A.; Sleptsova, S.A.; Yoon, C.; Cho, J.H. Nanocomposites based on polytetrafluoroethylene and ultrahigh molecular weight polyethylene: A brief review. Bull. Korean Chem. Soc. 2014, 35, 3411–3420. [Google Scholar] [CrossRef] [Green Version]
- Okhlopkova, T.A.; Borisova, R.V.; Nikiforov, L.A.; Spiridonov, A.M.; Okhlopkova, A.A.; Jeong, D.Y.; Cho, J.H. Supramolecular structure and mechanical characteristics of ultrahigh-molecular-weight polyethylene-inorganic nanoparticle nanocomposites. Bull. Korean Chem. Soc. 2016, 37, 439–444. [Google Scholar] [CrossRef]
- Gogoleva, O.V.; Petrova, P.N.; Popov, S.N.; Okhlopkova, A.A. Wear-resistant composite materials based on ultrahigh molecular weight polyethylene and basalt fibers. J. Frict. Wear 2015, 36, 301–305. [Google Scholar] [CrossRef]
- Borisova, R.V.; Nikiforov, L.A.; Spiridonov, A.M.; Okhlopkova, T.A.; Okhlopkova, A.A.; Koryakina, N.S. The Influence of Brominated UHMWPE on the Tribological Characteristics and Wear of Polymeric Nanocomposites Based on UHMWPE and Nanoparticles. J. Frict. Wear 2019, 40, 27–32. [Google Scholar] [CrossRef]
- Danilova, S.N.; Okhlopkova, A.A.; Pesetskii, S.S.; Mironova, S.N.; Savvinova, O.R.; Spiridonov, A.M. Investigation of physico-mechanical and tribotechnical properties of ultra high molecular weight polyethylene modified by organoclay. Polym. Mater. Technol. 2018, 4, 57–65. [Google Scholar]
- Borisova, R.V.; Nikiforov, L.A.; Okhlopkova, T.A.; Spiridonov, A.M.; Okhlopkova, A.A.; Koryakina, N.S. Effect of brominated UHMWPE on the properties and structure of the resulting UHMWPE/boron carbide nanocomposite. In Proceedings of the AIP Conference Proceedings, Ekaterinburg, Russia, 21–25 May 2018; Volume 2053, p. 040009. [Google Scholar]
- Danilova, S.N.; Okhlopkova, A.A.; Sleptsova, S.A.; Ivanov, A.N.; Grigoreva, L.A.; Spiridonov, A.M. Polymer composite materials based on ultra-high molecular weight polyethylene and modified montmorillonite. IOP Conf. Ser. Earth Environ. Sci. 2019, 320. [Google Scholar] [CrossRef]
- Rasheva, Z.; Zhang, G.; Burkhart, T. A correlation between the tribological and mechanical properties of short carbon fibers reinforced PEEK materials with different fiber orientations. Tribol. Int. 2010, 43, 1430–1437. [Google Scholar] [CrossRef]
- Kurtz, S. The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, 1st ed.; Academic Press: Cambridge, MA, USA, 2004; ISBN 0124298516. [Google Scholar]
- Okhlopkova, A.A.; Sleptsova, S.A.; Nikiforova, P.G.; Struchkova, T.S.; Okhlopkova, T.A.; Ivanova, Z.S. Main Directions for Research on the Development of Tribotechnical Composites Used in the Arctic Regions (Experience of North-Eastern Federal University in Yakutsk). Inorg. Mater. Appl. Res. 2019, 10, 1441–1447. [Google Scholar] [CrossRef]
- Okhlopkova, A.A.; Nikiforov, L.A.; Okhlopkova, T.A.; Borisova, R.V. Polymer Nanocomposites Exploited Under the Arctic Conditions. KNE Mater. Sci. 2016, 1, 122. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Feng, M.; Liu, X.; Huang, M.; Ma, R. Ultra-High Molecular Weight Polyethylene Fibers/Epoxy Composites: Effect of Fiber Treatment on Properties. Fibers Polym. 2019, 20, 421–427. [Google Scholar] [CrossRef]
- Dayyoub, T.; Maksimkin, A.V.; Kaloshkin, S.; Kolesnikov, E.; Chukov, D.; Dyachkova, T.P.; Gutnik, I. The structure and mechanical properties of the UHMWPE films modified by the mixture of graphene nanoplates with polyaniline. Polymers 2018, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-high molecular weight polyethylene: Influence of the chemical, physical and mechanical properties on thewear behavior. A review. Materials 2017, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Tiggemann, H.M.; Tomacheski, D.; Celso, F.; Ribeiro, V.F.; Nachtigall, S.M.B. Use of wollastonite in a thermoplastic elastomer composition. Polym. Test. 2013, 32, 1373–1378. [Google Scholar] [CrossRef]
- Meng, M.R.; Dou, Q. Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Mater. Sci. Eng. A 2008, 492, 177–184. [Google Scholar] [CrossRef]
- Hadal, R.S.; Dasari, A.; Rohrmann, J.; Misra, R.D.K. Effect of wollastonite and talc on the micromechanisms of tensile deformation in polypropylene composites. Mater. Sci. Eng. A 2004, 372, 296–315. [Google Scholar] [CrossRef]
- Liang, J.Z.; Li, B.; Ruan, J.Q. Crystallization properties and thermal stability of polypropylene composites filled with wollastonite. Polym. Test. 2015, 42, 185–191. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, Z.; Wang, C.; Jiang, J.; Li, G.; Mai, K. Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochim. Acta 2012, 536, 47–54. [Google Scholar] [CrossRef]
- Amin, A.S.; Oza, B.I. Effect of Untreated Wollastonite on Mechanical Properties of Nylon6. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 4714–4718. [Google Scholar]
- Tong, J.; Ma, Y.; Arnell, R.D.; Ren, L. Free abrasive wear behavior of UHMWPE composites filled with wollastonite fibers. Compos. Part A Appl. Sci. Manuf. 2006, 37, 38–45. [Google Scholar] [CrossRef]
- Panin, S.V.; Alexenko, V.O.; Buslovich, D.G.; Duc Anh, N.; Qitao, H. Solid-Lubricant, Polymer-Polymeric and Functionalized Fiber– and Powder Reinforced Composites of Ultra-High Molecular Weight Polyethylene. IOP Conf. Ser. Earth Environ. Sci. 2018, 115, 012010. [Google Scholar] [CrossRef]
- Hadal, R.; Dasari, A.; Rohrmann, J.; Misra, R.D.K. Susceptibility to scratch surface damage of wollastonite- and talc-containing polypropylene micrometric composites. Mater. Sci. Eng. A 2004, 380, 326–339. [Google Scholar] [CrossRef]
- Salas-Papayanopolos, H.; Morales, A.B.; Lozano, T.; Laria, J.; Sanchez, S.; Rodriguez, F.; Martinez, G.; Cerino, F. Improvement of toughness properties of polypropylene/wollastonite composites using an interface modifier. Polym. Compos. 2013, 35, 1184–1192. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Mayorov, V.Y.; Modin, E.B.; Portnyagin, A.S.; Gridasova, E.A.; Agafonova, I.G.; Zakirova, A.E.; Tananaev, I.G.; Avramenko, V.A. Sol-gel and SPS combined synthesis of highly porous wollastonite ceramic materials with immobilized Au-NPs. Ceram. Int. 2017, 43, 8509–8516. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Modin, E.B.; Mayorov, V.Y.; Portnyagin, A.S.; Kobylyakov, S.P.; Golub, A.V.; Medkov, M.A.; Tananaev, I.G.; Avramenko, V.A. Wollastonite ceramics with bimodal porous structures prepared by sol–gel and SPS techniques. RSC Adv. 2016, 6, 34066–34073. [Google Scholar] [CrossRef]
- Zakaria, M.Y.; Sulong, A.B.; Muhamad, N.; Raza, M.R.; Ramli, M.I. Incorporation of wollastonite bioactive ceramic with titanium for medical applications: An overview. Mater. Sci. Eng. C 2019, 97, 884–895. [Google Scholar] [CrossRef]
- Chan, J.X.; Wong, J.F.; Hassan, A.; Mohamad, Z.; Othman, N. Mechanical properties of wollastonite reinforced thermoplastic composites: A review. Polym. Compos. 2019, 395–429. [Google Scholar] [CrossRef]
- Yuan, X.; Easteal, A.J.; Bhattacharyya, D. Mechanical performance of rotomoulded wollastonite-reinforced polyethylene composites. Int. J. Mod. Phys. B 2007, 21, 1059–1066. [Google Scholar] [CrossRef]
- Deshmukh, G.S.; Peshwe, D.R.; Pathak, S.U.; Ekhe, J.D. Evaluation of mechanical and thermal properties of Poly (butylene terephthalate) (PBT) composites reinforced with wollastonite. Trans. Indian Inst. Met. 2011, 64, 127–132. [Google Scholar] [CrossRef]
- Amarababu, B.; Pandu Rangadu, V. Synthesis and Characterization of Mineral Wollastonite Particulate Filled Vinyl-Ester Resin Composites. Int. Lett. Chem. Phys. Astron. 2013, 37, 91–102. [Google Scholar] [CrossRef]
- Švab, I.; Musil, V.; Pustak, A.; Šmit, I. Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. II. Mechanical properties and adhesion. Polym. Compos. 2009, 30, 1091–1097. [Google Scholar] [CrossRef]
- Lin, K.; Chang, J.; Lu, J. Synthesis of wollastonite nanowires via hydrothermal microemulsion methods. Mater. Lett. 2006, 60, 3007–3010. [Google Scholar] [CrossRef]
- Zemni, S.; Hajji, M.; Triki, M.; M’nif, A.; Hamzaoui, A.H. Study of phosphogypsum transformation into calcium silicate and sodium sulfate and their physicochemical characterization. J. Clean. Prod. 2018, 198, 874–881. [Google Scholar] [CrossRef]
- Ribas, R.G.; Campos, T.M.B.; Schatkoski, V.M.; de Menezes, B.R.C.; Montanheiro, T.L.d.A.; Thim, G.P. α-wollastonite crystallization at low temperature. Ceram. Int. 2020, 46, 6575–6580. [Google Scholar] [CrossRef]
- Gordienko, P.S.; Mikhailov, M.M.; Banerjee, S.; Chandra Sharma, Y.; Yarusova, S.B.; Zhevtun, I.G.; Vlasov, V.A.; Shabalin, I.A.; Sushkov, Y.V. Effect of annealing conditions on the structure, phase and granulometry composition, and reflectance spectra and their changes on irradiation for calcium silicate powders. Mater. Chem. Phys. 2017, 197, 266–271. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Nasir, R.M. The Effect of Zeolite on the Crystallization Behaviour and Tribological Properties of UHMWPE Composite. Adv. Mater. Res. 2013, 812, 100–106. [Google Scholar]
- Sitarz, M.; Handke, M.; Mozgawa, W. Calculations of silicooxygen ring vibration frequencies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 2831–2837. [Google Scholar] [CrossRef]
- Kalinkina, E.V.; Kalinkin, A.M.; Forsling, W.; Makarov, V.N. Sorption of atmospheric carbon dioxide and structural changeof Ca and Mg silicate minerals during grinding II. Enstatite, åkermanite and wollastonite. Int. J. Miner. Process. 2001, 61, 289–299. [Google Scholar] [CrossRef]
- Chakradhar, R.P.S.; Nagabhushana, B.M.; Chandrappa, G.T.; Ramesh, K.P.; Rao, J.L. Solution combustion derived nanocrystalline macroporous wollastonite ceramics. Mater. Chem. Phys. 2006, 95, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Zhandarov, S.; Pisanova, E.; Mäder, E.; Nairn, J.A. Investigation of load transfer between the fiber and the matrix in pull-out tests with fibers having different diameters. J. Adhes. Sci. Technol. 2001, 15, 205–222. [Google Scholar] [CrossRef]
- Panin, S.V. Biomechanical Properties of Dispersep Article Reinforced Polymer Composites on Ultrahigh Molecular Weight Polyethylene (UHMWPE). MOJ Appl. Bionics Biomech. 2017, 1, 192–199. [Google Scholar]
- Khalil, Y.; Hopkinson, N.; Kowalski, A.; Fairclough, J.P.A. Characterisation of UHMWPE polymer powder for laser sintering. Materials 2019, 12, 3496. [Google Scholar] [CrossRef] [Green Version]
- Tanniru, M.; Yuan, Q.; Misra, R.D.K. On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) nanocomposites. Polymer 2006, 47, 2133–2146. [Google Scholar] [CrossRef]
- Way, J.L.; Atkinson, J.R.; Nutting, J. The effect of spherulite size on the fracture morphology of polypropylene. J. Mater. Sci. 1974, 9, 293–299. [Google Scholar] [CrossRef]
- Yetgin, S.H. Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. J. Mater. Res. Technol. 2019, 8, 4725–4735. [Google Scholar] [CrossRef]
- Karuppiah, K.S.K.; Bruck, A.L.; Sundararajan, S.; Wang, J.; Lin, Z.; Xu, Z.H.; Li, X. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Act. Biomat. 2008, 4, 1401–1410. [Google Scholar] [CrossRef]
- Wang, J.; Yan, F.; Xue, Q. Friction and Wear Behavior of Ultra-High Molecular Weight Polyethylene Sliding Against GCr15 Steel and Electroless Ni–P Alloy Coating Under the Lubrication of Seawater. Tribol. Lett. 2009, 35, 85–95. [Google Scholar] [CrossRef]
- Zhang, G.; Chang, L.; Schlarb, A.K. The roles of nano-SiO2 particles on the tribological behavior of short carbon fiber reinforced PEEK. Compos. Sci. Technol. 2009, 69, 1029–1035. [Google Scholar]
- Dangsheng, X. Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Mater. Lett. 2005, 59, 175–179. [Google Scholar] [CrossRef]
Wollastonite Added, wt.% | Characteristics | |||
---|---|---|---|---|
Mechanical | ||||
H (N/mm2) | εb, % | σT, MPa | E, MPa | |
0 | 26.2 ± 1.31 | 311 ± 18 | 33 ± 2 | 420 ± 25 |
0.5 | 27.3 ± 1.37 | 329 ± 20 | 37 ± 1 | 670 ± 20 |
1 | 28.8 ± 1.44 | 315 ± 34 | 37 ± 3 | 574 ± 59 |
2 | 29.5 ± 1.48 | 355 ± 21 | 42 ± 3 | 581 ± 54 |
5 | 32.9 ± 1.64 | 324 ± 28 | 40 ± 4 | 630 ± 51 |
10 | 37.2 ± 1.86 | 308 ± 21 | 34 ± 2 | 761 ± 34 |
20 | 37.3 ± 1.87 | 242 ± 19 | 29 ± 2 | 698 ± 32 |
Wollastonite Added, wt.% | Characteristics | ||
---|---|---|---|
Thermodynamic | |||
Tme, °C | ∆Hme, J/g | α, % | |
0 | 127.7 | 171.1 | 58.8 |
0.5 | 128.1 | 169.0 | 58.4 |
1 | 127.6 | 167.7 | 58.2 |
2 | 127.7 | 166.1 | 58.2 |
5 | 127.9 | 162.8 | 58.8 |
10 | 128.0 | 160.9 | 61.4 |
20 | 128.0 | 151.1 | 64.9 |
Wollastonite Added, wt.% | Characteristics | ||
---|---|---|---|
Tribological | |||
f | L, mm | Wear Rate, ×10−6 mm3/(N⋅m) | |
0 | 0.38 ± 0.01 | 0.31 ± 0.02 | 0.57 ± 0.01 |
0.5 | 0.40 ± 0.02 | 0.18 ± 0.01 | 0.19 ± 0.01 |
1 | 0.40 ± 0.02 | 0.15 ± 0.01 | 0.09 ± 0.01 |
2 | 0.40 ± 0.02 | 0.16 ± 0.02 | 0.37 ± 0.01 |
5 | 0.38 ± 0.01 | 0.12 ± 0.01 | 0.50 ± 0.02 |
10 | 0.36 ± 0.01 | 0.11 ± 0.01 | 0.72 ± 0.02 |
20 | 0.38 ± 0.01 | 0.13 ± 0.03 | 0.80 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilova, S.N.; Yarusova, S.B.; Kulchin, Y.N.; Zhevtun, I.G.; Buravlev, I.Y.; Okhlopkova, A.A.; Gordienko, P.S.; Subbotin, E.P. UHMWPE/CaSiO3 Nanocomposite: Mechanical and Tribological Properties. Polymers 2021, 13, 570. https://doi.org/10.3390/polym13040570
Danilova SN, Yarusova SB, Kulchin YN, Zhevtun IG, Buravlev IY, Okhlopkova AA, Gordienko PS, Subbotin EP. UHMWPE/CaSiO3 Nanocomposite: Mechanical and Tribological Properties. Polymers. 2021; 13(4):570. https://doi.org/10.3390/polym13040570
Chicago/Turabian StyleDanilova, Sakhayana N., Sofia B. Yarusova, Yuri N. Kulchin, Ivan G. Zhevtun, Igor Yu. Buravlev, Aitalina A. Okhlopkova, Pavel S. Gordienko, and Evgeniy P. Subbotin. 2021. "UHMWPE/CaSiO3 Nanocomposite: Mechanical and Tribological Properties" Polymers 13, no. 4: 570. https://doi.org/10.3390/polym13040570
APA StyleDanilova, S. N., Yarusova, S. B., Kulchin, Y. N., Zhevtun, I. G., Buravlev, I. Y., Okhlopkova, A. A., Gordienko, P. S., & Subbotin, E. P. (2021). UHMWPE/CaSiO3 Nanocomposite: Mechanical and Tribological Properties. Polymers, 13(4), 570. https://doi.org/10.3390/polym13040570