Yield and Selectivity Improvement in the Synthesis of Carbonated Linseed Oil by Catalytic Conversion of Carbon Dioxide
Abstract
:1. Introduction
Oil Type | Catalyst Type | Reaction Conditions (Carbonation) | Reaction Results (Carbonation) | Equipment/ Process Characteristics | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pressure | Temperature | Time | % Catalyst | % Conversion | % Carbonation | % Selectivity | ||||
ESO | TBAB | 1 atm | 120 °C | 70 h | 5% | 87% | 77% | 89% | 1:3 (H2O/Epoxy) | [8] |
ELO | TBAB | 10 bar | 140 °C | 96 h | --- | 91% | 26.7% | --- | --- | [18] |
ESO | TBAB | 1 atm | 110 °C | 70 h | 5% | 94% | --- | --- | Constant CO2 flow | [20] |
ESO | TBAB | 1 atm | 110 °C | 89 h | 2.5% | 63% | --- | --- | --- | [2] |
57 bar | 140 °C | 20 h | 2.5% | 100% | --- | --- | --- | |||
ESO | TBAB | 10 bar | 120 °C | 20 h | 3% | 71.3% | --- | --- | Autoclave | [28] |
ECSO | TBAB | 30 bar | 140 °C | 24 h | 3.75% | 99.9% | --- | --- | Autoclave | [32] |
ESO | TBAB | 103 bar | 100 °C | 40 h | 5% | 100% | --- | --- | Supercritical CO2 | [7] |
ECO | TBAB | 5 bar | 130 °C | 8 h | 5% | 93.4% | 57.7% | 61.7% | Oxirane esterification | [33] |
ECSO | TBAB | 6 bar | 120 °C | 7 h | 8% | 73% | --- | --- | Continuous Flow microwave reactor | [30] |
EVNO | TBAB | 59 bar | 100 °C | 46 h | --- | 95.3% | --- | --- | Supercritical CO2 with stirring (150 rpm) | [34] |
ESO | TBAB | 1 atm | 120 °C | 40 h | 5% | 86.7% | 77.4% | 88.6% | 1:3 (H2O/Epoxy) + Microwave | [29] |
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of Epoxidized Linseed Oil (ELO)
2.4. Synthesis of Carbonated Epoxidized Linseed Oil (CELO)
3. Results
3.1. Characterization of Epoxidated Linseed Oil (ELO)
3.2. Characterization of Carbonated Epoxidized Linseed Oil (CELO)
3.2.1. Effect of Temperature
3.2.2. Effect of Pressure and Catalyst Concentration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kreye, O.; Mutlu, H.; Meier, M.A. Sustainable routes to polyurethane precursors. Green Chem. 2013, 15, 1431–1455. [Google Scholar] [CrossRef]
- Javni, I.; Hong, D.P.; Petrović, Z.S. Soy-based polyurethanes by nonisocyanate route. J. Appl. Polym. Sci. 2008, 108, 3867–3875. [Google Scholar] [CrossRef]
- Rokicki, G.; Parzuchowski, P.G.; Mazurek, M. Non-isocyanate polyurethanes: Synthesis, properties, and applications. Polym. Adv. Technol. 2015, 26, 707–761. [Google Scholar] [CrossRef]
- Cornille, A.; Auvergne, R.; Figovsky, O.; Boutevin, B.; Caillol, S. A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur. Polym. J. 2017, 87, 535–552. [Google Scholar] [CrossRef]
- Aissa, K.A.; Zheng, J.L.; Estel, L.; Leveneur, S. Thermal stability of epoxidized and carbonated vegetable oils. Org. Process Res. Dev. 2016, 20, 948–953. [Google Scholar] [CrossRef]
- Doll, K.M.; Erhan, S.Z. The improved synthesis of carbonated soybean oil using supercritical carbon dioxide at a reduced reaction time. Green Chem. 2005, 7, 849–854. [Google Scholar] [CrossRef]
- Büttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Recent developments in the synthesis of cyclic carbonates from epoxides and CO2. Top. Curr. Chem. 2017, 375, 1–56. [Google Scholar] [CrossRef]
- Mazo, P.; Rios, L. Carbonation of epoxidized soybean oil improved by the addition of water. J. Am. Oil Chem. Soc. 2013, 90, 725–730. [Google Scholar] [CrossRef]
- Dehonor-Márquez, E.; Vigueras-Santiago, E.; Hernández-López, S. Thermal Study of Aluminum Trifluoromethyl Sulfonate as Effective Catalyst for the Polymerization of Epoxidized Linseed Oil. Phys. Chem. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Zheng, J.L.; Burel, F.; Salmi, T.; Taouk, B.; Leveneur, S. Carbonation of Vegetable Oils: Influence of Mass Transfer on Reaction Kinetics. Ind. Eng. Chem. Res. 2015, 54, 10935–10944. [Google Scholar] [CrossRef]
- Pérez-Sena, W.Y.; Cai, X.; Kebir, N.; Vernières-Hassimi, L.; Serra, C.; Salmi, T.; Leveneur, S. Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: A kinetic and thermal study. Chem. Eng. J. 2018, 346, 271–280. [Google Scholar] [CrossRef]
- Błażek, K.; Datta, J. Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 173–211. [Google Scholar] [CrossRef]
- Błażek, K.; Kasprzyk, P.; Datta, J. Diamine derivatives of dimerized fatty acids and bio-based polyether polyol as sustainable platforms for the synthesis of non-isocyanate polyurethanes. Polymer 2020, 205, 122768. [Google Scholar] [CrossRef]
- Suryawanshi, Y.; Sanap, P.; Wani, V. Advances in the synthesis of non-isocyanate polyurethanes. Polym. Bull. 2019, 76, 3233–3246. [Google Scholar] [CrossRef]
- Ke, J.; Li, X.; Jiang, S.; Liang, C.; Wang, J.; Kang, M.; Li, Q.; Zhao, Y. Promising approaches to improve the performances of hybrid non-isocyanate polyurethane. Polym. Int. 2019, 68, 651–660. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-based routes to synthesize cyclic carbonates and polyamines precursors of non-isocyanate polyurethanes: A review. Eur. Polym. J. 2019, 118, 668–684. [Google Scholar] [CrossRef]
- Besse, V.; Camara, F.; Voirin, C.; Auvergne, R.; Caillol, S.; Boutevin, B. Synthesis and applications of unsaturated cyclocarbonates. Polym. Chem. 2013, 4, 4545–4561. [Google Scholar] [CrossRef]
- Bähr, M.; Mülhaupt, R. Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion. Green Chem. 2012, 14, 483–489. [Google Scholar] [CrossRef]
- Kathalewar, M.S.; Joshi, P.B.; Sabnis, A.S.; Malshe, V.C. Non-isocyanate polyurethanes: From chemistry to applications. RSC Adv. 2013, 3, 4110–4129. [Google Scholar] [CrossRef]
- Tamami, B.; Sohn, S.; Wilkes, G.L. Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J. Appl. Polym. Sci. 2004, 92, 883–891. [Google Scholar] [CrossRef]
- Yue, S.; Wang, P.; Hao, X. Synthesis of cyclic carbonate from CO2 and epoxide using bifunctional imidazolium ionic liquid under mild conditions. Fuel 2019, 251, 233–241. [Google Scholar] [CrossRef]
- Saptal, V.B.; Bhanage, B.M. Bifunctional Ionic Liquids Derived from Biorenewable Sources as Sustainable Catalysts for Fixation of Carbon Dioxide. ChemSusChem 2017, 10, 1145–1151. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Ma, Y.; Wang, L.; Zhang, J. Quaternary ammonium-based ionic liquids bearing different numbers of hydroxyl groups as highly efficient catalysts for the fixation of CO2: A theoretical study by QM and MD. Catal. Sci. Technol. 2016, 6, 7773–7782. [Google Scholar] [CrossRef]
- Monfared, A.; Mohammadi, R.; Hosseinian, A.; Sarhandi, S.; Nezhad, P.D. Cycloaddition of atmospheric CO2 to epoxides under solvent-free conditions: A straightforward route to carbonates by green chemistry metrics. RSC Adv. 2019, 9, 3884–3899. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, S.; Cheng, W.; Ren, J. Hydroxyl-functionalized ionic liquid: A novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett. 2008, 49, 3588–3591. [Google Scholar] [CrossRef]
- Miloslavskiy, D.; Gotlib, E.; Figovsky, O.; Pashin, D. Cyclic Carbonates Based on Vegetable Oils. Int. Lett. Chem. Phys. Astron. 2014, 27, 20–29. [Google Scholar] [CrossRef]
- Maltby, K.A.; Hutchby, M.; Plucinski, P.; Davidson, M.G.; Hintermair, U. Selective catalytic synthesis of 1,2- and 8,9-cyclic limonene carbonates as versatile building blocks for novel hydroxyurethanes. Chem. Eur. J. 2020, 26, 7405–7415. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, Y.; Yan, S.; Wang, X.; Kang, M.; Wang, J.; Xiang, H. Catalytic synthesis of carbonated soybean oil. Catal. Lett. 2008, 123, 246–251. [Google Scholar] [CrossRef]
- Mazo, P.C.; Rios, L.A. Improved synthesis of carbonated vegetable oils using microwaves. Chem. Eng. J. 2012, 210, 333–338. [Google Scholar] [CrossRef]
- Zheng, J.L.; Tolvanen, P.; Taouk, B.; Eränen, K.; Leveneur, S.; Salmi, T. Synthesis of carbonated vegetable oils: Investigation of microwave effect in a pressurized continuous-flow recycle batch reactor. Chem. Eng. Res. Des. 2018, 132, 9–18. [Google Scholar] [CrossRef]
- Mahendran, A.R.; Aust, N.; Wuzella, G.; Müller, U.; Kandelbauer, A. Bio-Based Non-Isocyanate Urethane Derived from Plant Oil. J. Polym. Environ. 2012, 20, 926–931. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Y.; Hou, Z.; He, Z.; Eli, W. Synthesis of carbonated cotton seed oil and its application as lubricating base oil. J. Am. Oil Chem. Soc. 2014, 91, 143–150. [Google Scholar] [CrossRef]
- Guzmán, A.F.; Echeverri, D.A.; Rios, L.A. Carbonation of epoxidized castor oil: A new bio-based building block for the chemical industry. J. Chem. Technol. Biotechnol. 2017, 92, 1104–1110. [Google Scholar] [CrossRef]
- Mann, N.; Mendon, S.K.; Rawlins, J.W.; Thames, S.F. Synthesis of carbonated vernonia oil. J. Am. Oil Chem. Soc. 2008, 85, 791–796. [Google Scholar] [CrossRef]
- Dehonor-Márquez, E.; Nieto-Alarcón, J.F.; Vigueras-Santiago, E.; Hernández-López, S. Effective and Fast Epoxidation Reaction of Linseed Oil Using 50 wt% Hydrogen Peroxyde. Am. J. Chem. 2018, 8, 99–106. [Google Scholar] [CrossRef]
- Farias, M.; Martinelli, M.; Bottega, D.P. Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex. Appl. Catal. A 2010, 384, 213–219. [Google Scholar] [CrossRef]
- López-Téllez, G.; Vigueras-Santiago, E.; Hernández-López, S. Characterization of linseed oil epoxidized at different percentages. Superf. Vacío 2009, 22, 5–10. [Google Scholar]
- Goud, V.V.; Patwardhan, A.V.; Dinda, S.; Pradhan, N.C. Epoxidation of karanja (Pongamia glabra) oil catalysed by acidic ion exchange resin. Eur. J. Lipid Sci. Technol. 2007, 109, 575–584. [Google Scholar] [CrossRef]
- Mungroo, R.; Pradhan, N.C.; Goud, V.V.; Dalai, A.K. Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem. Soc. 2008, 85, 887–896. [Google Scholar] [CrossRef]
- Janković, M.R.; Govedarica, O.M.; Sinadinović-Fišer, S.V. The epoxidation of linseed oil with In Situ formed peracetic acid: A model with included influence of the oil fatty acid composition. Ind. Crops Prod. 2020, 143, 111881. [Google Scholar] [CrossRef]
- Schönemann, A.; Edwards, H.G. Raman and FTIR microspectroscopic study of the alteration of Chinese tung oil and related drying oils during ageing. Anal. Bioanal. Chem. 2011, 400, 1173–1180. [Google Scholar] [CrossRef]
- Audic, J.L.; Lemiègre, L.; Corre, Y.M. Thermal and mechanical properties of a polyhydroxyalkanoate plasticized with biobased epoxidized broccoli oil. J. Appl. Polym. Sci. 2014, 131, 39983. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, G.; Wang, X.; Liu, X.; Jing, L. Kinetics of the epoxidation of soybean oil with H2O2 catalyzed by phosphotungstic heteropoly acid in the presence of polyethylene glycol. Eur. J. Lipid Sci. Technol. 2015, 117, 1185–1191. [Google Scholar] [CrossRef]
- Sharma, B.K.; Adhvaryu, A.; Erhan, S.Z. Synthesis of hydroxy thio-ether derivatives of vegetable oil. J. Agric. Food Chem. 2006, 54, 9866–9872. [Google Scholar] [CrossRef] [PubMed]
- Albarrán-Preza, E.; Corona-Becerril, D.; Vigueras-Santiago, E.; Hernández-López, S. Sweet polymers: Synthesis and characterization of xylitol-based epoxidized linseed oil resins. Eur. Polym. J. 2016, 75, 539–551. [Google Scholar] [CrossRef]
- Alves, M.; Grignard, B.; Gennen, S.; Detrembleur, C.; Jerome, C.; Tassaing, T. Organocatalytic synthesis of bio-based cyclic carbonates from CO2 and vegetable oils. RSC Adv. 2015, 5, 53629–53636. [Google Scholar] [CrossRef]
- Doley, S.; Dolui, S.K. Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties. Eur. Polym. J. 2018, 102, 161–168. [Google Scholar] [CrossRef]
- Liu, W.; Lu, G. Carbonation of epoxidized methyl soyates in tetrabutylammonium bromide-based deep eutectic solvents. J. Oleo Sci. 2018, 67, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, X.S. Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC Adv. 2015, 5, 44009–44017. [Google Scholar] [CrossRef]
- Miyake, Y.; Yokomizo, K.; Matsuzaki, N. Rapid Determination of Iodine Value by 1 H Nuclear Magnetic Resonance Spectroscopy. J. Am. Oil Chem. Soc. 1998, 75, 15–19. [Google Scholar] [CrossRef]
- Ochiai, B.; Endo, T. Carbon dioxide and carbon disulfide as resources for functional polymers. Prog. Polym. Sci. 2005, 30, 183–215. [Google Scholar] [CrossRef]
- Kihara, N.; Hara, N.; Endo, T. Catalytic Activity of Various Salts in the Reaction of 2,3-Epoxypropyl Phenyl Ether and Carbon Dioxide under Atmospheric Pressure. J. Org. Chem. 1993, 58, 6198–6202. [Google Scholar] [CrossRef]
- Eren, T.; Küsefoğlu, S. One step hydroxybromination of fatty acid derivatives. Eur. J. Lipid Sci. Technol. 2004, 106, 27–34. [Google Scholar] [CrossRef]
- Cai, X.; Matos, M.; Leveneur, S. Structure–reactivity: Comparison between the carbonation of epoxidized vegetable oils and the corresponding epoxidized fatty acid methyl Ester. Ind. Eng. Chem. Res. 2019, 58, 1548–1560. [Google Scholar] [CrossRef]
- Cai, X.; Zheng, J.; Wärnå, J.; Salmi, T.; Taouk, B.; Leveneur, S. Influence of gas-liquid mass transfer on kinetic modeling: Carbonation of epoxidized vegetable oils. Chem. Eng. J. 2017, 313, 1168–1183. [Google Scholar] [CrossRef]
- Boyer, A.; Cloutet, E.; Tassaing, T.; Gadenne, B.; Alfos, C.; Cramail, H. Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: Towards novel precursors for polyurethane synthesis. Green Chem. 2010, 12, 2205–2213. [Google Scholar] [CrossRef]
- Foltran, S.; Maisonneuve, L.; Cloutet, E.; Gadenne, B.; Alfos, C.; Tassaing, T.; Cramail, H. Solubility in CO2 and swelling studies by in situ IR spectroscopy of vegetable-based epoxidized oils as polyurethane precursors. Polym. Chem. 2012, 3, 525–532. [Google Scholar] [CrossRef]
Run | Temperature (°C) | Pressure (psi) | Catalyst (%) | Time (h) | Conversion (%) | Carbonation (%) | Selectivity (%) |
---|---|---|---|---|---|---|---|
1 | 90 | 90 | 2.5 | 24 | 55.0 ± 0.51 | 51 | 92.7 |
2 | 100 | 90 | 2.5 | 24 | 63.2 ± 0.40 | 53.2 | 85.8 |
3 | 110 | 90 | 2.5 | 24 | 74.3 ± 0.48 | 56.5 | 76.1 |
4 | 120 | 90 | 2.5 | 24 | 85.3 ± 0.59 | 57.1 | 66.9 |
5 | 90 | 60 | 3.5 | 68 | 74.0 ± 0.59 | 66.7 | 90.1 |
6 | 90 | 90 | 3.5 | 68 | 83.9 ± 0.55 | 73.6 | 87.6 |
7 | 90 | 120 | 3.5 | 68 | 88.3 ± 0.61 | 77.2 | 87.2 |
8 | 90 | 120 | 2.5 | 86 | 80.8 ± 0.58 | 70.9 | 87.8 |
9 | 90 | 120 | 3.5 | 86 | 94.1 ± 0.51 | 83.2 | 88.5 |
10 | 90 | 120 | 5.0 | 86 | 96.1 ± 0.56 | 95.8 | 99.8 |
NMR Spectra | Chemical Bond | Signals (ppm) | |
---|---|---|---|
Eren et al., 2004 [53] | Experimental | ||
13C-NMR | –CHBr– | 64.8 | 64.4 |
–CHOH– | 75.3 | 74.5 | |
1H-NMR | –CHBr– | 4.0 | 4.2 |
–CHOH– | 3.4 | 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Martínez, D.A.; Vigueras Santiago, E.; Hernández López, S. Yield and Selectivity Improvement in the Synthesis of Carbonated Linseed Oil by Catalytic Conversion of Carbon Dioxide. Polymers 2021, 13, 852. https://doi.org/10.3390/polym13060852
González Martínez DA, Vigueras Santiago E, Hernández López S. Yield and Selectivity Improvement in the Synthesis of Carbonated Linseed Oil by Catalytic Conversion of Carbon Dioxide. Polymers. 2021; 13(6):852. https://doi.org/10.3390/polym13060852
Chicago/Turabian StyleGonzález Martínez, David Alejandro, Enrique Vigueras Santiago, and Susana Hernández López. 2021. "Yield and Selectivity Improvement in the Synthesis of Carbonated Linseed Oil by Catalytic Conversion of Carbon Dioxide" Polymers 13, no. 6: 852. https://doi.org/10.3390/polym13060852
APA StyleGonzález Martínez, D. A., Vigueras Santiago, E., & Hernández López, S. (2021). Yield and Selectivity Improvement in the Synthesis of Carbonated Linseed Oil by Catalytic Conversion of Carbon Dioxide. Polymers, 13(6), 852. https://doi.org/10.3390/polym13060852