Corona Charging of Isotactic-Polypropylene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Polarization
- Generator powered by 3-phase 400/230 V, 50 Hz current, which is a source of energy for electric discharges when activating limited to 2 kW (Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland);
- A corona-discharge unit where two electrodes (Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland) are mounted (in parallel to each other);
- High tension transformer for transferring energy from the generator to the discharge unit (Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland).
2.3. Determination of Piezoelectric Properties
2.4. Atomic Force Microscopy (AFM)
3. Results
3.1. Preparation and Polarization of Polypropylene Films
3.2. Piezoelectric Properties
3.3. Surface Morphology of Polypropylene Films
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kestelman, V.N.; Pinchuk, L.S.; Goldable, V.A. Electret Effect and Electric Technologies. In Electrets in Engineering; Springer: Boston, MA, USA, 2000; p. 1. [Google Scholar]
- Bauer, S.; Bauer, F. Piezoelectric Polymers and Their Applications. In Piezoelectricity: Evolution and Future of a Technology; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 114, p. 157. [Google Scholar]
- Ye, Z.-G. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Application; Woodhead Publishing: Cambridge, UK, 2008; p. 73. [Google Scholar]
- Bauer, S.; Bauer, F. Piezoelectric PZT Ceramics. In Piezoelectricity: Evolution and Future of a Technology; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 89–130. [Google Scholar]
- Tichý, J.; Erhart, J.; Kittinger, E.; Prívratská, J. Piezoelectric Materials. In Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, Thermodynamical Properties of Piezoelectric Materials; Springer-Verlag: Berlin, Heidelberg, Germany, 2010; p. 119. [Google Scholar]
- Kaczmarek, H.; Królikowski, B.; Klimiec, E.; Chylińska, M.; Bajer, D. Advances in the study of piezoelectric polymers. Russ. Chem. Rev. 2019, 88, 749–774. [Google Scholar] [CrossRef]
- Al-Nabulsi, J.; El-Sharo, S.; Salawy, N.; Al-Doori, H. Methods of energy generation from the human body: A literature review. J. Med. Eng. Technol. 2019, 43, 255–272. [Google Scholar] [CrossRef]
- Makarev, D.I.; Lugovaya, M.A.; Rybyanets, A.N. Influence of low-dimensional conductive components on the properties of digital piezomaterials of the “piezoceramic-polymer metal” system. Ferroelctrics 2019, 539, 79–83. [Google Scholar] [CrossRef]
- Peng, H.; Sun, X.; Weng, W.; Fang, X. Polymer Materials for Energy and Electronic Applications: Energy Harvesting Based on Polymer; Academic Press: Amsterdam, The Netherlands, 2017; p. 151. [Google Scholar]
- Usher, T.D.; Cousins, K.R.; Zhang, R.; Ducharme, S. The promise of piezoelectric polymers. Polym. Int. 2018, 67, 790–798. [Google Scholar] [CrossRef]
- Liu, J.; Gu, H.; Liu, Q.; Ren, L.; Li, G. An intelligent material for tissue reconstruction: The piezoelectric properties of polycaprolactone/barium titanate composites. Mater. Lett. 2019, 236, 686–689. [Google Scholar] [CrossRef]
- Sadasivuni, K.K.; Cabibihan, J.-J.; Deshmukh, K.; Goutham, S.; Abubasha, M.K.; Gogoi, J.P.; Klemenoks, I.; Sakale, G.; Sekhar, B.S.; Sreekanth, P.S.R.; et al. A review on porous polymer composite material for multifunctional electronic applications. Polym. Plast. Tech. Eng. 2019, 58, 1253–1294. [Google Scholar] [CrossRef]
- Qian, S.; Qin, L.; He, J.; Zhang, N.; Qian, J.; Mu, J.; Geng, W.; Hou, X.; Chou, X. A lead-free stretchable piezoelectric composite for human motion monitoring. Mater. Lett. 2020, 261, 127119. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Królikowski, B.; Klimiec, E.; Kowalonek, J. New piezoelectric composites based on isotactic polypropylene filled with silicate. J. Mater. Sci. Mater Elektron. 2017, 28, 6435–6447. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, H.; Chylińska, M.; Klimiec, E.; Krolikowski, B.; Sionkowski, G.; Machnik, M. Piezoelectrets form polypropylene composites doped with mineral fillers. Pure Appl. Chem. 2019, 91, 967–982. [Google Scholar] [CrossRef]
- Chang, J.S.; Lawles, P.A.; Yamamoto, T. Corona Discharge Processes. IEEE Trans. Plasma Sci. 1991, 19, 1152–1166. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Q.; Zhang, D.; Wadsworth, L.C. Corona treatment of polyolefin films—A review. Adv. Polym. Tech. 1999, 18, 171–180. [Google Scholar]
- Zhu, Y.; Otsubo, M.; Honda, C. Degradation of polymeric materials exposed to corona discharges. Polym. Test. 2006, 25, 313–317. [Google Scholar] [CrossRef]
- He, B.; Li, T.; Xiu, Y.; Zhao, H.; Peng, Z.; Meng, Y. Study on law of negative corona discharge in microparticle-air two-phase flow media. AIP Adv. 2016, 6, 35114. [Google Scholar] [CrossRef] [Green Version]
- Yehia, A. Characteristic of the dielectric barrier corona discharges. AIP Adv. 2019, 9, 45214. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Królikowski, B.; Chylińska, M.; Kowalonek, J.; Frąszczak, Z. Modification of surface properties of polyethylene composites for piezoelectric materials. Z. Przem. Chem. 2019, 98, 1932–1938. [Google Scholar]
- Chylińska, M.; Kaczmarek, H.; Moszyński, D.; Królikowski, B.; Kowalonek, J. Surface studies of UV irradiated polypropylene films modified with mineral fillers designed as piezoelectric materials. Polymers 2020, 12, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Technical Data Sheet. Hoffmann Group, Germany. Available online: https://www.hoffmann-mineral.com/Products/Sillitin-Sillikolloid/SILLIKOLLOID-P-87 (accessed on 7 September 2020).
- Technical Data Sheet. Rock Tron, UK. Available online: https://www.yumpu.com/en/document/read/7180532/mintron-7tm-product-data-sheet-rocktron (accessed on 7 September 2020).
- Blateyron, F. Profile Parameters from ISO 4287, 2006–2020. Available online: https://guide.digitalsurf.com/en/guide-iso-4287-parameters.html (accessed on 15 September 2020).
- Ramazanov, M.A.; Hajiyeva, F.V.; Maharramov, A.M. Influence of corona discharge on the electret and charge states of nanocomposites based on isotactic polypropylene and zirconium dioxide nanoparticles. Ferroelectrics 2016, 493, 103–109. [Google Scholar] [CrossRef]
- Vlaeva, I.; Yovcheva, T.; Viraneva, A.; Kitova, S.; Exner, G.; Guzhova, A.; Galikhanov, M. Contact angle analysis of corona treated polypropylene films. J. Phys. Conf. Ser. 2012, 398, 12054. [Google Scholar] [CrossRef] [Green Version]
- Sellin, N.; Campos, J.S.D.C. Surface composition analysis of PP films treated by corona discharge. Mater. Res. 2003, 6, 163–166. [Google Scholar] [CrossRef]
- Wegener, M.; Wirges, W.; Fohlmeister, J.; Tiersch, B.; Gerhard-Multhaupt, R. Two-step inflation of cellular polypropylene films: Void-thickness increase and enhanced electromechanical properties. J. Phys. D Appl. Phys. 2004, 37, 623–627. [Google Scholar] [CrossRef]
- Qiu, X.; Xia, Z.; Wang, F. Piezoelectricity of single- and multi-layer cellular polypropylene film electrets. Front. Mater. Sci. China 2007, 1, 72–75. [Google Scholar] [CrossRef]
- Qaiss, A.; Saidi, H.; Fassi-Fehri, O.; Bousmina, M. Cellular polypropylene-based piezoelectric films. Polym. Eng. Sci. 2012, 52, 2637–2644. [Google Scholar] [CrossRef]
- Kacprzyk, R.; Kisiel, A. Piezo-electric properties of polypropylene laminates with a non-woven layer. J. Electrostat. 2013, 71, 400–402. [Google Scholar] [CrossRef]
- Mohebbi, A.; Mighri, F.; Ajji, A.; Rodrigue, D. Effect of processing conditions on the cellular morphology of polypropylene foamed films for piezoelectric applications. Cell. Polym. 2017, 36, 13–34. [Google Scholar] [CrossRef]
- Mohebbi, A.; Mighri, F.; Ajji, A.; Rodrigue, D. Polymer ferroelectret based on polypropylene foam: Piezoelectric properties prediction using dynamic mechanical analysis. Polym. Adv. Technol. 2017, 28, 476–483. [Google Scholar] [CrossRef]
- Mohebbi, A.; Mighri, F.; Ajji, A.; Rodrigue, D. Polymer ferroelectret based on polypropylene foam: Piezoelectric properties improvement using post-processing thermomechanical treatment. J. Appl. Polym. Sci. 2017, 134, 44577. [Google Scholar] [CrossRef]
- Jain, A.; Prashanth, K.J.; Sharma, A.K.; Jain, A.; Rashmi, P.N. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polym. Eng. Sci. 2015, 55, 1589–1616. [Google Scholar] [CrossRef]
- Faust, D.; Lakes, R.S. Temperature and Substrate Dependence of Piezoelectric Sensitivity for PVDF Films. Ferroelectrics 2015, 481, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-W.; An, Z.; He, L.-B.; Deng, Z. Piezoelectric coefficients measurement for PVDF films with pneumatic pressure rig in a sole cavity. In Proceedings of the Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Jinan, China, 30 October–2 November 2015. [Google Scholar]
- Katsouras, I.; Asadi, K.; Li, M.; Brandt van Driel, T.; Kjær, K.S.; Zhao, D.; Lenz, T.; Gu, Y.; Blom, P.W.M.; Damjanovic, D.; et al. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 2016, 15, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, N. Development of the Piezoelectric Properties of Poly(vinylidene fluoride) Based Ferroelectrics and Ferroelectrets Using Fillers and Mechanical Stretching. Ph.D. Thesis, Universite de Montreal, Montreal, QC, Canada, 2018. [Google Scholar]
- Mishra, S.; Unnikrishnan, L.; Nayak, S.K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2019, 304, 1800463. [Google Scholar] [CrossRef] [Green Version]
- Uchida, K.; Mita, K.; Higaki, Y.; Kojio, K.; Takhara, A. Lamellar orientation in isotactic polypropylene thin films: A compliment study via grazing incidence X-ray diffraction and surface/cross-sectional imaging. Polym. J. 2019, 51, 183–188. [Google Scholar] [CrossRef]
- Li, R.; Pei, J.; Li, X.; Guo, Q. Preparation, mechanical and electric properties of polypropylene fiber reinforced lead zirconate titanate flexible materials. Ferroelectrics 2019, 540, 162–178. [Google Scholar] [CrossRef]
- Hilczer, B.; Małecki, J. Electrets and Piezopolymers; PWN: Warsaw, Poland, 1992; pp. 15–22. [Google Scholar]
- Rychkov, D.; Altafim, R.A.P. Polymer Electrets and Ferroelectrets as EAPs: Models. In Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series; Carpi, F., Ed.; Springer: Cham, Switzerland, 2016; pp. 945–959. [Google Scholar]
- Paajanen, M.; Wegener, M.; Gerhard-Mulhaupt, R. Understanding the role of gas in the voids during corona charging of cellular electret films—A way to enhance their piezoelectricity. J. Phys. D Appl. Phys. 2001, 34, 2482–2488. [Google Scholar] [CrossRef]
Sample | d33 (pC/N) | |
---|---|---|
Unoriented | Oriented | |
i-PP | 15 (14) | 7.6 (18) |
i-PP + perlite PEX-02/20 | 9.6 (33) | 2.5 (80) |
i-PP + Sillikolloid P87 | 7.0 (52) | 3.0 (-) 1 |
i-PP + MinTron 7 ™ | 4.9 (78) | 4.0 (-) 1 |
d33 (pC/N) | Ref. | |
PVDF | [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] | [6,10,36,37,38,39,40,41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalonek, J.; Kaczmarek, H.; Królikowski, B.; Klimiec, E.; Chylińska, M. Corona Charging of Isotactic-Polypropylene Composites. Polymers 2021, 13, 942. https://doi.org/10.3390/polym13060942
Kowalonek J, Kaczmarek H, Królikowski B, Klimiec E, Chylińska M. Corona Charging of Isotactic-Polypropylene Composites. Polymers. 2021; 13(6):942. https://doi.org/10.3390/polym13060942
Chicago/Turabian StyleKowalonek, Jolanta, Halina Kaczmarek, Bogusław Królikowski, Ewa Klimiec, and Marta Chylińska. 2021. "Corona Charging of Isotactic-Polypropylene Composites" Polymers 13, no. 6: 942. https://doi.org/10.3390/polym13060942
APA StyleKowalonek, J., Kaczmarek, H., Królikowski, B., Klimiec, E., & Chylińska, M. (2021). Corona Charging of Isotactic-Polypropylene Composites. Polymers, 13(6), 942. https://doi.org/10.3390/polym13060942