Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore Hardness Measurements
Abstract
:1. Introduction
2. Methodology
2.1. Stage 1: Experimental Method and Statistical Processing of Data
2.1.1. Experimental Procedure
- (a)
- Dimensional Checking
- (b)
- Polymer Composition Characterization
- (c)
- Hardness Test
2.1.2. Analytical Procedure
3. Results and Discussion
3.1. Stage 2.: Reliability Estimation and Degradation Model Development
3.2. Stage 3.: Methodology Validation and Estimation of In-Service Operating Limit Conditions
4. Conclusions and Future Work
- The measured hardening can be a useful parameter to estimate the maximum recommended in-service time. A hardening of 5% generates a reduction of the recommended in-service time of 50% (i.e., a recommended time of use of 5 years), while a hardening of 10% implies a usability of only 3 years.
- The storage (and its associated hardening) of the NBR O-rings has a direct effect on the in-service durability, reducing this by up to 60.40%. Thus, the calculated time to integrity loss (TTIL), which is considered as the time in operation where a Shore A hardness equal to 65 is reached (beginning of the embrittlement), is 6 years (52,560 h).
- During the first three years of operation the increase of POF is practically insignificant. Nevertheless, from this point, and especially, from 5 years of operation, the POF increases from 10% to 20% at approximately 6 years (for new and stored).
- From 6 years of operation, the behavior of curves (for new and stored) are very different. In the case of stored ones, there is a linear progression up to reaching a POF equal to 0.78 at 10 years, while, in the case of the new ones, the POF is practically 100% when an accumulated in-service time equivalent to 10 years is reached.
- A validation of the methodology was performed by comparing the predicted allowable storage periods and conditions with the real ones. Thus, applying this model, if O-rings are replaced in annual operation of maintenance, the reliability of O-rings with a hardness of 65 shore A is 0.85, whereas in the case of O-rings with a hardness of 68 shore A it is 0.78.
- From the study, the general recommendation is using O-rings with a HSA less than 60 HSA, to ensure a reliability above 0.90. Finally, it was proved that the storage strategies of our nuclear power plants are successful, perfectly meeting the expectations of suitability and functionality of the components when they are installed after storage.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz Sanchez, F.A.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer recycling in an open-source additive manufacturing context: Mechanical issues. Addit. Manuf. 2017, 17, 87–105. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Vairis, A.; Kechagias, J. Sustainable Additive Manufacturing: Mechanical Response of Acrylonitrile-Butadiene-Styrene over Multiple Recycling Processes. Sustainability 2020, 12, 3568. [Google Scholar] [CrossRef]
- Paajanen, A.; Sipilä, K. Modelling Tools for the Combined Effects of Thermal and Radiation Ageing in Polymeric Materials; Research Report, VTT-R-00102-17; Technical Research Centre of Finland: Espoo, Finland, 2015; p. 15. [Google Scholar]
- Burnay, S.G. An overview of polymer ageing studies in the nuclear power industry. Nucl. Instrum. Methods Phys. Res. B 2001, 185, 4–7. [Google Scholar] [CrossRef]
- Zaghdoudi, M.; Kömmling, A.; Jaunich, M.; Wolf, D. Scission, Cross-Linking, and Physical Relaxation during Thermal Degradation of Elastomers. Polymers 2019, 11, 1280. [Google Scholar] [CrossRef] [Green Version]
- Frigione, M.; Naddeo, C.; Acierno, D. Cold-curing epoxy resins: Aging and environmental effects. I-Thermal properties. J. Polym. Eng. 2001, 21, 23–52. [Google Scholar] [CrossRef]
- Bouaziz, R.; Truffault, L.; Borisov, R.; Ovalle, C.; Laiarinandrasana, L.; Miquelard-Garnier, G.; Fayolle, B. Elastic Properties of Polychloroprene Rubbers in Tension and Compression during Ageing. Polymers 2020, 12, 2354. [Google Scholar] [CrossRef]
- Mao, L.; Davies, B.; Jackson, L. Application of the sensor selection approach in polymer electrolyte membrane fuel cell prognostics and health management. Energies 2017, 10, 1511. [Google Scholar] [CrossRef] [Green Version]
- Sikorska, J.Z.; Hodkiewicz, M.; Ma, L. Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst. Signal Pract. 2011, 25, 1803–1836. [Google Scholar] [CrossRef]
- Cubillo, A.; Perinpanayagam, S.; Esperon-Miguez, M. A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery. Adv. Mech. Eng. 2016, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Bowler, N.; Liu, S. Aging Mechanisms and Monitoring of Cable Polymers. Int. J. Progn. Health Manag. 2015, 6, 1–22. [Google Scholar]
- Khan, I.; Hussain, G.; Al-Ghamdi, K.A.; Umer, R. Investigation of impact strength and hardness of UHMW polyethylene composites reinforced with nano-hydroxyapatite particles fabricated by friction stir processing. Polymers 2019, 11, 1041. [Google Scholar] [CrossRef] [Green Version]
- EPRI CGI-OR02. Commercial Grade Item Evaluation for National O-Rings; Electrical Power Research Institute: Palo Alto, CA, USA, 1992; p. 32. [Google Scholar]
- Klingender, R.C. Acrylonitrile Butadiene Rubber. In Specialty Elastomers; Klingender, R.C., Ed.; CRC Press: Boca Raton, FA, USA, 2008; pp. 39–92. ISBN 978-1-57444-676-0. [Google Scholar]
- Degrange, J.-M.; Thomine, M.; Kapsa, P.H.; Pelletier, J.M.; Chazeau, L.; Vigier, G.; Dudragne, G.; Guerbé, L. Influence of viscoelasticity on the tribological behaviour of carbon black filled nitrile rubber (NBR) for lip seal application. Wear 2005, 259, 684–692. [Google Scholar] [CrossRef]
- Kapitonov, E.A.; Petrova, N.N.; Mukhin, V.V.; Nikiforov, L.A.; Gogolev, V.D.; Shim, E.L.; Okhlopkova, A.A.; Cho, J.-H. Enhanced Physical and Mechanical Properties of Nitrile-Butadiene Rubber Composites with N-Cetylpyridinium Bromide-Carbon Black. Molecules 2021, 26, 805. [Google Scholar] [CrossRef] [PubMed]
- Bafna, S. Factors influencing hardness and compression set measurements on O-rings. Polym. Plast. Technol. Eng. 2013, 52, 1069–1073. [Google Scholar] [CrossRef]
- Rodríguez-Prieto, A.; Camacho, A.M.; Callejas, M.; Sebastián, M.A. Fitness for service and reliability of materials for manufacturing components intended for Demanding Service Conditions in the Petrochemical Industry. IEEE Access 2020, 8, 92275–92286. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M. Recent advances and trends of nanofilled/nanostructured epoxies. Materials 2020, 13, 3415. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Prieto, A.; Camacho, A.M.; Sebastián, M.A.; Yanguas-Gil, A. Analysis of mechanical and thermal properties of elastomers for manufacturing of components in the nuclear industry. Procedia Manuf. 2019, 41, 177–184. [Google Scholar] [CrossRef]
- Kömmling, A.; Jaunich, M.; Pourmand, P.; Wolff, D.; Hedenqvist, M. Analysis of O-Ring seal failure under static conditions and determination of end-of-lifetime criterion. Polymers 2019, 11, 1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.R. Polymer ageing: Physics, chemistry or engineering? Time to reflect. C. R. Chim. 2006, 9, 1396–1408. [Google Scholar] [CrossRef]
- Moraczewski, K.; Stepczynska, M.; Malinowski, R.; Karasiewicz, T.; Jagodzinski, B.; Rytlewski, P. The effect of accelerated aging on polylactide containing plant extracts. Polymers 2019, 11, 575. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Prieto, A.; Primera, E.; Callejas, M.; Camacho, A.M. Reliability-based evaluation of the suitability of polymers for additive manufacturing intended to extreme operating conditions. Polymers 2020, 12, 2327. [Google Scholar] [CrossRef]
- Csányi, G.M.; Bal, S.; Tamus, Z.A. Dielectric measurement based deducted quantities to track repetitive, short-term thermal aging of Polyvinyl Chloride (PVC) cable insulation. Polymers 2020, 12, 2809. [Google Scholar] [CrossRef]
- Azura, A.; Thomas, A. Effect of heat ageing on crosslinking scission and mechanical properties. elastomer and components. service life prediction–progress and challenges. In Elastomer and Components: Service Life Prediction—Progress and Challenges; Coveney, V., Ed.; Woodhead Publishing: Cambridge, UK, 2006; pp. 27–38. [Google Scholar]
- Zaghdoudi, M.; Kömmling, A.; Jaunich, M.; Wolf, D. Erroneous or Arrhenius: A degradation rate-based model for EPDM during homogeneous ageing. Polymers 2020, 12, 2152. [Google Scholar] [CrossRef] [PubMed]
- Moon, B.; Jun, N.; Park, S.; Seok, C.-S.; Hong, U.I. A study on the modified Arrhenius equation using the oxygen permeation block model of crosslink structure. Polymers 2019, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- IAEA-TECDOC-1551. Implementation Strategies and Tools for Condition Based on Maintenance at Nuclear Power Plants; International Atomic Energy Agency: Vienna, Austria, 2007; p. 188. [Google Scholar]
- Van de Voorde, M.H.; Restat, C. Selection Guide to Organic Materials for Nuclear Engineering; European Organization for Nuclear research, CERN: Geneva, Switzerland, 1972. [Google Scholar]
- ISO 868. Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness); International Standardization Organization (ISO): Geneva, Switzerland, 2003; p. 5. [Google Scholar]
- Gargol, M.; Klepka, T.; Klapiszewski, L.; Podkoscielna, B. Synthesis and Thermo-Mechanical Study of Epoxy Resin-Based Composites with Waste Fibers of Hemp as an Eco-Friendly Filler. Polymers 2021, 13, 503. [Google Scholar] [CrossRef] [PubMed]
- EPRI TR 1009748. Guidance for Accident Function Assessment for RISC-3 Applications; Electrical Power Research Institute: Palo Alto, CA, USA, 2005; p. 192. [Google Scholar]
- Bassi, A.C.; Casa, F.; Mendichi, R. Shore A hardness and thickness. Polym. Test. 1987, 7, 165–175. [Google Scholar] [CrossRef]
- ASTM D-2240. Standard Test Method for Rubber Property—Durometer Hardness; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2015; p. 13. [Google Scholar]
- Siddiqui, A.; Braden, M.; Patel, M.P.; Parker, S. An experimental and theoretical study of the effect of sample thickness on the Shore hardness of elastomers. Dent. Mater. 2010, 26, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Prieto, A. Ingeniería inversa y caracterización avanzada de materiales para el establecimiento de requisitos de aceptación en procesos singulares de dedicación. Nuclear España 2019, 402, 55–58. [Google Scholar]
- Samantarai, S.; Nag, A.; Singh, N.; Dash, D.; Basak, A.; Nando, G.B.; Das, N.C. Chemical modification of nitrile rubber in the latex stage by functionalizing phosphorylated cardanol prepolymer: A bio-based plasticizer and a renewable resource. J. Elastomers Plast. 2018, 51, 99–129. [Google Scholar] [CrossRef]
- Chandrasekaran, V.C. Essential Rubber Formulary, Formulas for Practitioners; Elsevier: Amsterdam, The Netherlands, 2007; p. 202. [Google Scholar]
- Briscoe, B.J.; Sinha, S.K. Hardness and Normal Indentation of Polymers. In Mechanical Properties and Testing of Polymers; Swallowe, G.M., Ed.; Polymer Science and Technology Series, 3; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Brown, R. Physical Testing of Rubber; Springer: Berlin/Heidelberg, Germany, 2006; p. 387. [Google Scholar]
- Spetz, G. Improving precision of rubber test methods: Part 1—Hardness. Polym. Test. 1993, 12, 351–378. [Google Scholar] [CrossRef]
- Vieira, T.; Lundberg, J.; Eriksson, O. Evaluation of uncertainty on Shore hardness measurements of tyre treads and implications to tyre/road noise measurements with the Close Proximity method. Measurement 2020, 162, 107882. [Google Scholar] [CrossRef]
- Slouf, M.; Strachota, B.; Strachota, A.; Gajdosova, V.; Bertschova, V.; Nohava, J. Macro-, micro- and nanomechanical characterization of crosslinked polymers with very broad range of mechanical properties. Polymers 2020, 12, 2951. [Google Scholar] [CrossRef]
- Petik, F. Metrology of hardness: Past development and present state of the art. Measurement 1990, 8, 42–44. [Google Scholar] [CrossRef]
- Ibáñez García, A.; Martínez García, A.; Ferrándiz Bou, S. Study of the influence of the almond shell variety on the mechanical properties of starch-based polymer biocomposites. Polymers 2020, 12, 2049. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, W.; Chen, Z.; Li, K.; Liu, H.; Li, S. Rubber accelerated ageing life prediction by Peck model considering initial hardness influence. Polym. Test. 2019, 80, 106132. [Google Scholar] [CrossRef]
- Limpert, E.; Stahel, W.A. Problems with using the normal distribution—and ways to improve quality and efficiency of data analysis. PLoS ONE 2011, 6, e21403. [Google Scholar] [CrossRef] [Green Version]
- Stahl, S. The evolution of the normal distribution. Math. Mag. 2006, 79, 96–113. [Google Scholar] [CrossRef]
- Rodríguez-Prieto, A.; Callejas, M.; Primera, E.; Camacho, A.M. Reliability and Thermal Aging of Polymers Intended to Severe Operating Conditions. Proceedings 2020, 69, 9. [Google Scholar]
- Zhong, R.; Zhang, Z.; Zhao, H.; He, X.; Wang, X.; Zhang, R. Improving thermo-oxidative stability of nitrile rubber composites by functional graphene oxide. Materials 2018, 11, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Prieto, A. Evaluación analítica y Experimental de la Degradación por Almacenamiento de Juntas Elastoméricas Fabricadas como grado Comercial Destinadas en Aplicaciones Relacionadas con la Seguridad. In Proceedings of the Virtual Meeting of the Spanish Nuclear Society, Madrid, Spain, 16–19 November 2020; pp. 1–5. [Google Scholar]
- Rodríguez-Prieto, A.; Camacho, A.M.; Aragón, A.M.; Sebastián, M.A.; Yanguas-Gil, A. Polymers selection for harsh environments to be processed using additive manufacturing techniques. IEEE Access 2018, 6, 29899–29911. [Google Scholar] [CrossRef]
Supply Description | Composition | Expected Shore A Hardness | Typical Hardness Acceptance Criteria | External Diameter, Φext (mm) | Internal Diameter, Φint (mm) | Thickness (t) (mm) |
---|---|---|---|---|---|---|
O-rings (type V) | NBR | 60 | 60 ± 5 | 110 | 100 | 8 |
Polymer | Number of Peak in Figure 3 | Wave Number (cm−1) | Indication/Type of Bond Identified |
---|---|---|---|
NBR | #1 | 2236 | Stretching for –C=N |
#2 | 2851 | –C–H stretch of –CH3 | |
#3 | 2922 | –C–H stretch of –CH2 |
References (Year and Correlative Number) | Shore A—Mean Hardness | Percentage Variation in Hardness Compared to Stored O-rings | Standard Deviation |
---|---|---|---|
2014-1 | 62.32 | −11.98 | 1.72 |
2014-2 | 61.17 | −14.09 | 1.59 |
2015-1 | 61.19 | −14.08 | 2.33 |
2015-2 | 61.42 | −13.62 | 1.68 |
2015-3 | 61.50 | −13.47 | 2.11 |
2016-1 | 60.92 | −14.56 | 1.38 |
2016-2 | 61.25 | −13.93 | 1.66 |
2016-3 | 60.25 | −15.82 | 1.86 |
2017-1 | 62.08 | −12.40 | 2.61 |
2017-2 | 60-17 | −15.98 | 2.04 |
2017-3 | 60.33 | −15.66 | 1.83 |
2018-1 | 61.42 | −13.62 | 2.78 |
2018-2 | 62.42 | −11.80 | 1.68 |
2018-3 | 62.17 | −12.25 | 1.27 |
Stored batches | 69.78 | − | 2.62 |
Supply Description | Shore A Hardness (Mean Value) |
---|---|
New supplies (acquired between 2014 and 2018) | 61.33 |
Supplies stored for at least 18 years | 69.78 |
Evaluation Parameter | Hardening *1 (Difference between Means) (%) |
New to storage supplies comparison | 13.81 |
Maximum Allowable Loss of Reliability | TTD (Years) | RPI (Years) *2 |
---|---|---|
0.2 | 1.33 | 12 |
0.3 | 2.14 | 19 |
0.4 | 3.06 | 27 |
Scenario of Analysis | Maximum Allowable Storage Temperature (°C) *3 | Validation According to the Established Hypotheses |
---|---|---|
Very conservative | 27.50 | >upper limit of T = 20 ± 5 °C |
Moderately conservative | 26.31 | >upper limit of T = 20 ± 5 °C |
Minimally conservative | 25.17 | >upper limit of T = 20 ± 5 °C |
Analysis Scenario | Time (Years) to Reach the Maximum Allowable Hardness (70 Shore A) | Validation Criterion (Valid if it is “Above”) |
---|---|---|
Minimally conservative | 18.35 | 18 |
Moderately conservative | 22.93 | 22.5 |
Very conservative | 24.46 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Prieto, A.; Primera, E.; Frigione, M.; Camacho, A.M. Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore Hardness Measurements. Polymers 2021, 13, 943. https://doi.org/10.3390/polym13060943
Rodríguez-Prieto A, Primera E, Frigione M, Camacho AM. Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore Hardness Measurements. Polymers. 2021; 13(6):943. https://doi.org/10.3390/polym13060943
Chicago/Turabian StyleRodríguez-Prieto, Alvaro, Ernesto Primera, Mariaenrica Frigione, and Ana María Camacho. 2021. "Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore Hardness Measurements" Polymers 13, no. 6: 943. https://doi.org/10.3390/polym13060943
APA StyleRodríguez-Prieto, A., Primera, E., Frigione, M., & Camacho, A. M. (2021). Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore Hardness Measurements. Polymers, 13(6), 943. https://doi.org/10.3390/polym13060943