Experimental Validation of Falling Liquid Film Models: Velocity Assumption and Velocity Field Comparison
Abstract
:1. Introduction
2. Experimental Facility
2.1. Experimental Film Test Section and Flow Loop
2.2. PIV/PLIF System
2.3. Film Conditions
3. Experimental Methodology
3.1. Image Calibration and Dewarping
3.2. Interface Identification with PLIF
3.3. PIV Method
3.4. Adaptive PIV Test via Synthetic Particle Images
3.5. Experimental Methods Validation
3.5.1. Streamwise Velocity Profile Validation via PIV/PLIF, PTV and Nusselt’s Theory
3.5.2. Continuity Equation Validation
4. Results and Discussions
4.1. Model-Based Velocity Field Reconstruction
- (1)
- The parabolic velocity profile in Nusselt’s theory [34], :
- (2)
- Self-similar velocity profile assumption based on local film thickness and flow rates, which is given by Kapitza et al. In this paper, we refer to that equation as Kapitza’s velocity profile. This velocity profile corresponds to a first-order correction of Nusselt’s theory, which could adapt the velocity to the deformations of the free surface and changes in the flow rate [35,36,37].From Equation (5), a self-similar velocity can be acquired with an elementary experimental velocity field and film topology.
- (3)
- The streamwise velocity profile in the first-order weighted residuals model is a series expansion, and the profile finally adopted in the 1st WRM is given below:
- (4)
- The second-order regularized model reduced the four-equation first-order weighted residual model (2nd WRM) by eliminating the independence of and [2]. The streamwise velocity profile in the regularized model is given by the same formula as the 2nd WRM assumption.
4.2. Comparison of Instantaneous Velocity Profiles
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruyer-Quil, C.; Kofman, N.; Chasseur, D.; Mergui, S. Dynamics of falling liquid films. Eur. Phys. J. E Soft Matter 2014, 37, 30. [Google Scholar] [CrossRef] [PubMed]
- Kalliadasis, S.; RuyerQuil, C.; Scheid, B.; Velarde, M.G. Falling Liquid Films; Springer: Godalming, UK, 2012; Volume 176, pp. 1–440. [Google Scholar]
- Ruyer-Quil, C.; Manneville, P. Modeling film flows down inclined planes. Eur. Phys. J. B 1998, 6, 277–292. [Google Scholar] [CrossRef]
- Ruyer-Quil, C.; Manneville, P. Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 2002, 14, 170–183. [Google Scholar] [CrossRef] [Green Version]
- Adomeit, P.; Renz, U. Hydrodynamics of three-dimensional waves in laminar falling films. Int. J. Multiph. Flow 2000, 26, 1183–1208. [Google Scholar] [CrossRef]
- Fulford, G.D. The Flow of Liquids in Thin Films. In Advances in Chemical Engineering; Drew, T.B., Hoopes, J.W., Vermeulen, T., Cokelet, G.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1964; Volume 5, pp. 151–236. [Google Scholar]
- Atkinson, B.; Carruthers, P.A. Velocity Profile Measurements in Liquid Films. Chem. Eng. Res. Des. 1965, 43, 33–39. [Google Scholar]
- Nedderman, R.M. The Use of Stereoscopic Photography for the Measurement of Velocities in Liquids. Chem. Eng. Sci. 1961, 16, 113–119. [Google Scholar] [CrossRef]
- Dietze, G.F.; Al-Sibai, F.; Kneer, R. Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 2009, 637, 73–104. [Google Scholar] [CrossRef]
- Dietze, G.F.; Leefken, A.; Kneer, R. Investigation of the backflow phenomenon in falling liquid films. J. Fluid Mech. 2008, 595, 435–459. [Google Scholar] [CrossRef]
- Oldengarm, J.; van Krieken, A.H.; van der Klooster, H.W. Velocity profile measurements in a liquid film flow using the laser Doppler technique. J. Phys. E Sci. Instrum. 1975, 8, 203–205. [Google Scholar] [CrossRef]
- Al-Sibai, F.; Leefken, A.; Renz, U. Local and Instantaneous Distribution of Heat Transfer Rates and Velocities in Thin Wavy Films. Int. J. Therm. Sci. 2002, 41, 658–663. [Google Scholar] [CrossRef]
- Moran, K.L.M. Experimental Study of Laminar Liquid Films Falling on an Inclined Plate. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 1997. [Google Scholar]
- Alekseenko, S.V.; Antipin, V.A.; Bobylev, A.V.; Markovich, D.M. Application of PIV to velocity measurements in a liquid film flowing down an inclined cylinder. Exp. Fluids 2007, 43, 197–207. [Google Scholar] [CrossRef]
- Charogiannis, A.; An, J.S.; Markides, C.N. A simultaneous planar laser-induced fluorescence, particle image velocimetry and particle tracking velocimetry technique for the investigation of thin liquid-film flows. Exp. Therm. Fluid Sci. 2015, 68, 516–536. [Google Scholar] [CrossRef] [Green Version]
- Charogiannis, A.; Denner, F.; van Wachem, B.G.M.; Kalliadasis, S.; Markides, C.N. Detailed hydrodynamic characterization of harmonically excited falling-film flows: A combined experimental and computational study. Phys. Rev. Fluids 2017, 2, 014002. [Google Scholar] [CrossRef] [Green Version]
- Charogiannis, A.; Denner, F.; van Wachem, B.G.M.; Kalliadasis, S.; Markides, C.N. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments. Phys. Rev. Fluids 2017, 2, 124002. [Google Scholar] [CrossRef] [Green Version]
- Charogiannis, A.; Denner, F.; van Wachem, B.G.M.; Kalliadasis, S.; Scheid, B.; Markides, C.N. Experimental investigations of liquid falling films flowing under an inclined planar substrate. Phys. Rev. Fluids 2018, 3, 114002. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Q.; Jia, H.J.; Duan, R.Q. Experimental Observation of Flow Reversal in Thin Liquid Film Flow Falling on an Inclined Plate. Coatings 2020, 10, 599. [Google Scholar] [CrossRef]
- Raffel, M. Particle Image Velocimetry A Practical Guide, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Cowen, E.A.; Chang, K.A.; Liao, Q. A single-camera coupled PTV-LIF technique. Exp. Fluids 2001, 31, 63–73. [Google Scholar] [CrossRef]
- Scharnowski, S.; Kähler, C.J. Particle image velocimetry—Classical operating rules from today’s perspective. Opt. Lasers Eng. 2020. [Google Scholar] [CrossRef]
- Charogiannis, A.; Markdes, C.N.; An, J.S. A Novel Optical Technique for Accurate Planar Measurements of Film-Thickness and Velocity in Annular Flows. In Proceedings of the International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Portorož, Slovenia, 17 July 2017. [Google Scholar]
- Theunissen, R.; Scarano, F.; Riethmuller, M.L. An adaptive sampling and windowing interrogation method in PIV. Meas. Sci. Technol. 2007, 18, 275–287. [Google Scholar] [CrossRef]
- Theunissen, R.; Scarano, F.; Riethmuller, M.L. On improvement of PIV image interrogation near stationary interfaces. Exp. Fluids 2008, 45, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Theunissen, R.; Scarano, F.; Riethmuller, M.L. Spatially adaptive PIV interrogation based on data ensemble. Exp. Fluids 2010, 48, 875–887. [Google Scholar] [CrossRef]
- Westerweel, J.; Scarano, F. Universal outlier detection for PIV data. Exp. Fluids 2005, 39, 1096–1100. [Google Scholar] [CrossRef]
- Stamhuis, E.; Thielicke, W. PIVlab—Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. J. Open Res. Softw. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Lecordier, B.; Westerweel, J. The Europiv Synthetic Image Generator (S.I.G.). In Particle Image Velocimetry: Recent Improvements, 2nd ed.; Stanislas, M., Westerweel, J., Eds.; Springer: Berlin, Germany, 2004; pp. 145–161. [Google Scholar] [CrossRef]
- Liu, J.; Paul, J.D.; Gollub, J.P. Measurements of the Primary Instabilities of Film Flows. J. Fluid Mech. 1993, 250, 69–101. [Google Scholar] [CrossRef]
- Kahler, C.J.; Scharnowski, S.; Cierpka, C. On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 2012, 52, 1641–1656. [Google Scholar] [CrossRef] [Green Version]
- Kahler, C.J.; Scharnowski, S.; Cierpka, C. On the resolution limit of digital particle image velocimetry. Exp. Fluids 2012, 52, 1629–1639. [Google Scholar] [CrossRef] [Green Version]
- Ruyer-Quil, C.; Manneville, P. Improved modeling of flows down inclined planes. Eur. Phys. J. B 2000, 15, 357–369. [Google Scholar] [CrossRef]
- Moran, K.; Inumaru, J.; Kawaji, M. Instantaneous hydrodynamics of a laminar wavy liquid film. Int. J. Multiph. Flow 2002, 28, 731–755. [Google Scholar] [CrossRef]
- Malamataris, N.A.; Vlachogiannis, M.; Bontozoglou, V. Solitary waves on inclined films: Flow structure and binary interactions. Phys. Fluids 2002, 14, 1082–1094. [Google Scholar] [CrossRef]
- Malamataris, N.A.; Balakotaiah, V. Flow structure underneath the large amplitude waves of a vertically falling film. Aiche J. 2008, 54, 1725–1740. [Google Scholar] [CrossRef]
- Kapitza, P.L.; Kapitza, S.P. Wave flow of thin layers of a viscous fluid. In Collected Papers of P.L. Kapitza, 2nd ed.; Haar, D.T., Ed.; Elsevier: Amsterdam, The Netherlands, 1965; Volume 2, pp. 662–709. [Google Scholar]
Working Fluid | ρ kg/m3 | μ kg/(m·s) | σ N/m |
---|---|---|---|
Deionized water | 0.998 × 103 | 10.3 × 10−4 | 70.7 × 10−3 |
Glycerol water solution | 1.120 × 103 | 81.0 × 10−4 | 65.4 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Duan, R.; Jia, H. Experimental Validation of Falling Liquid Film Models: Velocity Assumption and Velocity Field Comparison. Polymers 2021, 13, 1205. https://doi.org/10.3390/polym13081205
Wang R, Duan R, Jia H. Experimental Validation of Falling Liquid Film Models: Velocity Assumption and Velocity Field Comparison. Polymers. 2021; 13(8):1205. https://doi.org/10.3390/polym13081205
Chicago/Turabian StyleWang, Ruiqi, Riqiang Duan, and Haijun Jia. 2021. "Experimental Validation of Falling Liquid Film Models: Velocity Assumption and Velocity Field Comparison" Polymers 13, no. 8: 1205. https://doi.org/10.3390/polym13081205
APA StyleWang, R., Duan, R., & Jia, H. (2021). Experimental Validation of Falling Liquid Film Models: Velocity Assumption and Velocity Field Comparison. Polymers, 13(8), 1205. https://doi.org/10.3390/polym13081205