Synthesis of an Addition-Crosslinkable, Silicon-Modified Polyolefin via Reactive Extrusion Monitored by In-Line Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Vinyltetramethyldisiloxane (VTMDS, M3)
2.3. Silane Grafting by Reactive Extrusion
2.4. Design of Experiments
2.5. Multivariate Data Analysis
2.6. Differential Scanning Calorimetry (DSC) for Boiling Point Determination
2.7. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) for Distillation Monitoring
2.8. Raman Spectroscopy for In-Line Monitoring, Process Control and Off-Line Spectra
2.9. Nuclear Magnetic Resonance Spectroscopy
2.10. Calculation of Grafting Degree and Grafting Efficiency
3. Results and Discussion
3.1. Vinyltetramethyldisiloxane (VTMDS) as Grafting Monomer for Reactive Extrusion
3.2. Structural Characterization of the Reaction Products
3.3. Quantitative Determination of Grafting Degree and Grafting Efficiency
3.4. Effect of Process Variables on Grafting Degree
3.5. Effect of Process Variables on Grafting Efficiency
3.6. Process Window for the Grafting Reaction at Reactive Extrusion
3.7. Data Selection and Pre-Processing for Multivariate Analysis
3.8. Determination of VTMDS Content Using PCA
3.9. Determination of Grafting Degree via PLS-R
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patterson, R.; Kandelbauer, A.; Müller, U.; Lammer, H. Crosslinked Thermoplastics. In Handbook of Thermoset Plastics; Dodiuk, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Bäuerle, T.; Ulitzsch, S.; Lorenz, A.; Rebner, K.; Chassé, T.; Kandelbauer, A.; Lorenz, G. Effects of process parameters on silane grafting of liquid ethylene-propylene copolymer by reactive extrusion as quantified by response surface methodology. Polymer 2020, 202, 122601. [Google Scholar] [CrossRef]
- Lü, R. Die Entwicklung Vernetzbarer Polyolefinblends und Deren Verarbeitung zu Schmelzgesponnenen Elastomerfasern. 2003. Available online: https://elib.uni-stuttgart.de/handle/11682/1621 (accessed on 27 March 2021).
- Ulitzsch, S.; Bäuerle, T.; Chassé, T.; Lorenz, G.; Kandelbauer, A. Optimizing the Process Efficiency of Reactive Extrusion in the Synthesis of Vinyltrimethoxysilane-Grafted Ethylene-Octene-Copolymer (EOC-g-VTMS) by Response Surface Methodology. Polymer (Basel) 2020, 12, 2798. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Chao, Y.J.; Wang, H.; Gong, J.; van Zee, J.W. Chemical and mechanical stability of EPDM in a PEM fuel cell environment. Polym. Degrad. Stab. 2009, 94, 2072–2078. [Google Scholar] [CrossRef]
- Lin, C.-W.; Chien, C.-H.; Tan, J.; Chao, Y.J.; van Zee, J.W. Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment. J. Power Sources 2011, 196, 1955–1966. [Google Scholar] [CrossRef]
- Cui, T.; Chao, Y.J.; Chen, X.M.; van Zee, J.W. Effect of water on life prediction of liquid silicone rubber seals in polymer electrolyte membrane fuel cell. J. Power Sources 2011, 196, 9536–9543. [Google Scholar] [CrossRef]
- Tan, J.; Chao, Y.J.; Yang, M.; Lee, W.-K.; van Zee, J.W. Chemical and mechanical stability of a Silicone gasket material exposed to PEM fuel cell environment. Int. J. Hydrogen Energy 2011, 36, 1846–1852. [Google Scholar] [CrossRef]
- Lin, C.-W.; Chien, C.-H.; Tan, J.; Chao, Y.-J.; van Zee, J.W. Dynamic mechanical characteristics of five elastomeric gasket materials aged in a simulated and an accelerated PEM fuel cell environment. Int. J. Hydrogen Energy 2011, 36, 6756–6767. [Google Scholar] [CrossRef]
- Nah, C.; Kim, S.G.; Shibulal, G.S.; Yoo, Y.H.; Mensah, B.; Jeong, B.-H.; Hong, B.K.; Ahn, J.-H. Effects of curing systems on the mechanical and chemical ageing resistance properties of gasket compounds based on ethylene-propylene-diene-termonomer rubber in a simulated fuel cell environment. Int. J. Hydrogen Energy 2015, 40, 10627–10635. [Google Scholar] [CrossRef]
- Dietrich, A.; Mejía, E. Investigations on the hydrosilylation of allyl cyanide: Synthesis and characterization of cyanopropyl-functionalized silicones. Eur. Polym. J. 2020, 122, 109377. [Google Scholar] [CrossRef]
- Guo, D.-J.; Han, H.-M.; Xiao, S.-J.; Dai, Z.-D. Surface-hydrophilic and protein-resistant silicone elastomers prepared by hydrosilylation of vinyl poly(ethylene glycol) on hydrosilanes-poly(dimethylsiloxane) surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2007, 308, 129–135. [Google Scholar] [CrossRef]
- Putzien, S.; Nuyken, O.; Kühn, F.E. Functionalized polysilalkylene siloxanes (polycarbosiloxanes) by hydrosilylation—Catalysis and synthesis. Prog. Polym. Sci. 2010, 35, 687–713. [Google Scholar] [CrossRef]
- Smahel, J. Tissue reactions to breast implants coated with polyurethane. Plast. Reconstr. Surg. 1978, 61, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Wiley: Chichester, UK; New York, NY, USA, 2001; ISBN 0471852988. [Google Scholar]
- Andreassen, E. Infrared and Raman spectroscopy of polypropylene. In Polypropylene; Karger-Kocsis, J., Ed.; Springer: Dordrecht, The Netherlands, 1999; pp. 320–328. ISBN 978-94-010-5899-5. [Google Scholar]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
Factor | Name | Unit | Low-Setting (−1) | Centerpoint (0) | High-Setting (+1) |
---|---|---|---|---|---|
A | VTMDS feed | mol/h | 0.1 | 0.2 | 0.3 |
B | DTBPH feed | mol/h | 0.003 | 0.010 | 0.017 |
C | temperature |
Setting | Temperature Increase | Unit | Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 |
---|---|---|---|---|---|---|---|---|
(−1) | 0 | °C | 80 | 100 | 130 | 160 | 180 | 180 |
(0) | 10 | °C | 100 | 120 | 150 | 180 | 200 | 200 |
(+1) | 20 | °C | 120 | 140 | 170 | 200 | 220 | 220 |
Serial No. | Factor Pattern | Independent Variable | Response Variable | |||||
---|---|---|---|---|---|---|---|---|
A | B | C | A: VTMDS Feed (mol/h) | B: DTBPH Feed (mol/h) | C: Temp. Increase (K) | Grafting Degree (wt%) | Relative Grafting (%) | |
1 | −1 | 1 | −1 | 0.1 | 0.017 | 0 | 0.67 | 68.00 |
2 | 1 | 1 | −1 | 0.3 | 0.017 | 0 | 1.43 | 37.21 |
3 | 0 | 0 | 0 | 0.2 | 0.010 | 20 | 1.35 | 54.50 |
4 | −1 | 0 | 0 | 0.1 | 0.010 | 20 | 0.76 | 77.27 |
5 | −1 | −1 | 1 | 0.1 | 0.003 | 40 | 0.46 | 46.12 |
6 | −1 | 1 | 1 | 0.1 | 0.017 | 40 | 0.84 | 85.03 |
7 | 1 | 1 | 1 | 0.3 | 0.017 | 40 | 1.92 | 50.05 |
8 | 0 | 0 | 1 | 0.2 | 0.010 | 40 | 1.22 | 49.36 |
9 | 0 | 0 | 0 | 0.2 | 0.010 | 20 | 1.36 | 55.22 |
10 | 0 | 0 | 0 | 0.2 | 0.010 | 20 | 1.22 | 49.31 |
11 | 0 | 1 | 0 | 0.2 | 0.017 | 20 | 1.39 | 56.40 |
12 | 1 | 0 | 0 | 0.3 | 0.010 | 20 | 1.52 | 39.56 |
13 | 0 | −1 | 0 | 0.2 | 0.003 | 20 | 0.72 | 28.95 |
14 | 0 | 0 | 0 | 0.2 | 0.010 | 20 | 1.22 | 49.56 |
15 | 0 | 0 | 0 | 0.2 | 0.010 | 20 | 1.26 | 50.88 |
16 | 0 | 0 | −1 | 0.2 | 0.010 | 0 | 0.93 | 37.55 |
17 | 1 | −1 | −1 | 0.3 | 0.003 | 0 | 0.62 | 16.14 |
18 | −1 | −1 | −1 | 0.1 | 0.003 | 0 | 0.33 | 33.45 |
19 | 0 | 0 | 0 | 0.2 | 0.010 | 20 | 1.25 | 50.40 |
20 | 1 | −1 | 1 | 0.3 | 0.003 | 40 | 0.83 | 21.70 |
Source | Degree of Freedom (df) | Sum of Squares | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 2.99 | 6 | 0.4984 | 67.65 | <0.0001 |
A-VTMDS feed | 1.06 | 1 | 1.06 | 144.26 | <0.0001 |
B-DTBPH feed | 1.08 | 1 | 1.08 | 146.93 | <0.0001 |
C-temperature increase | 0.1664 | 1 | 0.1664 | 22.59 | 0.0004 |
AB | 0.174 | 1 | 0.174 | 23.63 | 0.0003 |
B² | 0.1125 | 1 | 0.1125 | 15.27 | 0.0018 |
C² | 0.0898 | 1 | 0.0898 | 12.19 | 0.004 |
Residual | 0.0958 | 13 | 0.0074 | ||
Lack of Fit | 0.076 | 8 | 0.0095 | 2.41 | 0.174 |
Pure Error | 0.0197 | 5 | 0.0039 | ||
Cor Total | 3.09 | 19 | − | − | − |
Source | Degree of Freedom (df) | Sum of Squares | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5275.04 | 7 | 753.58 | 73.34 | <0.0001 |
A-VTMDS feed | 2108.59 | 1 | 2108.59 | 205.22 | <0.0001 |
B-DTBPH feed | 2259.91 | 1 | 2259.91 | 219.94 | <0.0001 |
C-temperature increase | 358.92 | 1 | 358.92 | 34.93 | <0.0001 |
AB | 72.24 | 1 | 72.24 | 7.03 | 0.0211 |
A² | 177.2 | 1 | 177.2 | 17.25 | 0.0013 |
B² | 163.59 | 1 | 163.59 | 15.92 | 0.0018 |
C² | 132.17 | 1 | 132.17 | 12.86 | 0.0037 |
Residual | 123.3 | 12 | 10.28 | ||
Lack of Fit | 90.43 | 7 | 12.92 | 1.97 | 0.2372 |
Pure Error | 32.87 | 5 | 6.57 | ||
Cor Total | 5398.34 | 19 |
Set No. | PCA VTMDS mol/h | Partial Least Squares Regression (PLS-R) Grafting Degree wt% |
---|---|---|
1 | 0.1 | 0.67 |
2 | 0.5 | 1.43 |
3 | 0.3 | 1.35 |
4 | 0.1 | 0.76 |
5 | 0.1 | 0.46 |
6 | 0.1 | 0.84 |
7 | 0.3 | 1.36 |
8 | 0.3 | 1.22 |
9 | 0.3 | 1.39 * |
10 | 0.5 | 1.52 |
11 | 0.3 | 0.72 * |
12 | 0.3 | 1.22 |
13 | 0.3 | 1.26 |
14 | 0.3 | 0.93 |
15 | 0.1 | 0.33 |
16 | 0.3 | 1.25 |
17 | 0.3 | 1.26 |
18 | 0.5 | 0.83 |
19 | 0.5 | 1.92 |
Position Raman Band Off-Line (cm−1) | Literature Range (cm−1) | Molecule Group | Vibration |
---|---|---|---|
1597 | 1615–1590 | Si–CH=CH2 | C=C stretching |
1442 | 1456–1440 | −CH3 aliphatic | asymmetric |
1409 | 1410–1390 | Si–CH=CH2 | CH2 in plane deformation vibration |
1305 | 1305–1295 | −(CH2)n− | CH2 deformation vibration |
1274 | 1290–1240 | Si−(CH3) | Sharp symmetric CH3 deformation vibration |
1153 | 1175–1120 | C−C−C | C−C−C vibration |
1065 | 1100–1040 | C−C−C aliphatic | C−C−C vibration |
1039 | 1100–1040 | C−C−C branched | C−C−C vibration |
1008 | 1020–1000 | Si–CH=CH2 | Trans CH wagging vibration |
970 | 973 | C−C−C branched | C−C−C stretching |
958 | 980–940 | Si–CH=CH2 | CH2 wagging vibration |
913 | 985–800 | Si−H | Si−H deformation vibration |
846 | 900–800 | C−C−C | C−C−C vibration |
839 | 870–760 | Si–CH3 | Si–CH3 rocking vibration |
768 | 765 | Si−C | Si−C stretching |
737 | 735–725 | −(CH2)3− | −(CH2)3− rocking vibration |
701 | 705–670 | Si−C | Si−C stretching |
678 | 705–670 | Si−C | Si−C stretching |
628 | 624–580 | Si−O−Si | Si−O−Si broad symmetric stretching |
554 | 555–530 | C−CH3/−CH2 | CH2 wagging, C−CH3 stretching, CH2 rocking |
545 | 625–480 | Si−O−Si | Si−O−Si broad symmetric stretching |
526 | 540–485 | C−C−C | C−C−C vibration |
426 | 460–420 | CH2 | Wagging CH2 |
303 | 300 | C−C−C | broad C−C−C vibration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulitzsch, S.; Bäuerle, T.; Stefanakis, M.; Brecht, M.; Chassé, T.; Lorenz, G.; Kandelbauer, A. Synthesis of an Addition-Crosslinkable, Silicon-Modified Polyolefin via Reactive Extrusion Monitored by In-Line Raman Spectroscopy. Polymers 2021, 13, 1246. https://doi.org/10.3390/polym13081246
Ulitzsch S, Bäuerle T, Stefanakis M, Brecht M, Chassé T, Lorenz G, Kandelbauer A. Synthesis of an Addition-Crosslinkable, Silicon-Modified Polyolefin via Reactive Extrusion Monitored by In-Line Raman Spectroscopy. Polymers. 2021; 13(8):1246. https://doi.org/10.3390/polym13081246
Chicago/Turabian StyleUlitzsch, Steffen, Tim Bäuerle, Mona Stefanakis, Marc Brecht, Thomas Chassé, Günter Lorenz, and Andreas Kandelbauer. 2021. "Synthesis of an Addition-Crosslinkable, Silicon-Modified Polyolefin via Reactive Extrusion Monitored by In-Line Raman Spectroscopy" Polymers 13, no. 8: 1246. https://doi.org/10.3390/polym13081246
APA StyleUlitzsch, S., Bäuerle, T., Stefanakis, M., Brecht, M., Chassé, T., Lorenz, G., & Kandelbauer, A. (2021). Synthesis of an Addition-Crosslinkable, Silicon-Modified Polyolefin via Reactive Extrusion Monitored by In-Line Raman Spectroscopy. Polymers, 13(8), 1246. https://doi.org/10.3390/polym13081246