A Study on the Interfacial Compatibility, Microstructure and Physico-Chemical Properties of Polyimide/Organically Modified Silica Nanocomposite Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of BPDA-PDA PAA, PI-Silica, and PI-Organically Modified Silica Composite Films
2.3. Preparation of Pure Silica (TSi) and GPMS-Modified Silica (TSi-GPMS)
2.4. Characterization and Properties Evaluation
3. Results and Discussion
3.1. Structural Characterization by NMR Spectroscopy
3.2. Influence of GPMS on the Morphology of the Composite
3.3. Optical Transmittance
3.4. FT-IR Spectra
3.5. Thermal Properties
3.6. Dielectric Properties
4. Conclusions
- (i)
- The substitution of TEOS with GPMS can reduce the formation of large silica particles by using a large number of hydroxyl groups and can also form H-bonds with anhydride, carbonyl, carboxyl, and terminal amine groups in the polyimides/polyamic acids.
- (ii)
- The organic segment of GPMS can contribute significantly to bringing compatibilization between the two phases.
- (iii)
- Epoxy group of GPMS will contribute to the formation of H-bonds or networks with carboxyl acid groups or terminal amine groups of the PAA for the compatibilized composites (homopolymerization and their impacts on the PI-silica composite cannot be ruled out for this kind of system).
- (iv)
- SEM images suggested that the size of the silica particles in the PI/TSi composites was remarkably decreased by the addition of GPMS. Overall, it could be suggested that the incorporation of GPMS can produce compatibilized PI-silica composites with improved optical transmittance and controlled dielectric constants and all of the reported composites have shown Td5 more than 460 °C. The above investigations will help increase the feasibility of using PI-silica composites in many useful structural applications such as in high-temperature manufacturing plants, electronic packaging, aerospace, and automotive industries.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moon, K.H.; Chae, B.; Kim, K.S.; Lee, S.W.; Jung, Y.M. Preparation and Characterization of Transparent Polyimide–Silica Composite Films Using Polyimide with Carboxylic Acid Groups. Polymers 2019, 11, 489. [Google Scholar] [CrossRef] [Green Version]
- Miki, M.; Horiuchi, H.; Yamada, Y. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes. Polymers 2013, 5, 1362–1379. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Mittal, K.L. Polyimides: Fundamentals and Applications; Marcel Dekker: New York, NY, USA, 1996. [Google Scholar]
- Lv, P.; Dong, Z.; Dai, X.; Qiu, X. Flexible Polydimethylsiloxane-Based Porous Polyimide Films with an Ultralow Dielectric Constant and Remarkable Water Resistance. ACS Appl. Polym. Mater. 2019, 1, 2597–2605. [Google Scholar] [CrossRef]
- Hirte, R. Polyimides: Materials, chemistry and characterization. In Procedings of the Third International Conference on Polyimides, Ellenville, NY, USA, 2–4 November 1988; Von Feger, H.G., Khojasteh, M.M., Mcgrath, J.E., Eds.; Elsevier: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK; Tokyo, Japan, 1988. [Google Scholar]
- Lee, J.-K.; Char, K.; Rhee, H.-W.; Ro, H.W.; Yoo, D.Y.; Yoon, D.Y. Synthetic control of molecular weight and microstructure of processible poly(methylsilsesquioxane)s for low-dielectric thin film applications. Polymer 2001, 42, 9085–9089. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Pethrick, R.A. Polymer Materials for Electronic Applications; ACS Symposium Series 184; Feit, E.D., Wilkins, C., Jr., Eds.; American Chemical Society: Washington, DC, USA, 1982; p. 246. [Google Scholar]
- Li, P.; Yu, J.; Jiang, S.; Fang, H.; Liu, K.; Hou, H. Dielectric, mechanical and thermal properties of all-organic PI/PSF composite films by in situ polymerization. e-Polymers 2020, 20, 226–232. [Google Scholar] [CrossRef]
- Ha, C.-S.; Mathews, A.S.; Woo, H.-G.; Li, H. Polyimides and High Performance Organic Polymers. In Advanced Functional Materials; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–36. [Google Scholar] [CrossRef]
- Shin, H.I.; Chang, J.-H. Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers. Polymers 2020, 12, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kioul, A.; Mascia, L. Compatibility of Polyimide-Silicate Ceramers Induced by Alkoxysilane Silane Coupling Agents. J. Non-Crystalline Solids 1994, 175, 169–186. [Google Scholar] [CrossRef]
- Romero, A.I.; Parentis, M.L.; Habert, A.C.; Gonzo, E.E. Synthesis of polyetherimide/silica hybrid membranes by the sol–gel process: Influence of the reaction conditions on the membrane properties. J. Mater. Sci. 2011, 46, 4701–4709. [Google Scholar] [CrossRef]
- Boroglu, M.S.; Gurkaynak, M.A. The preparation of novel silica modified polyimide membranes: Synthesis, characterization, and gas separation properties. Polym. Adv. Technol. 2011, 22, 545–553. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamada, Y.; Sakai, J. Gas Transport Properties of ODPA-TAPOB Hyperbranched Polyimide-Silica Hybrid Membranes. High Perform. Polym. 2006, 18, 655–664. [Google Scholar] [CrossRef]
- Al-Kandary, S.; Ali, A.A.M.; Ahmad, Z. Morphology and thermo-mechanical properties of compatibilized polyimide-silica nanocomposites. J. Appl. Polym. Sci. 2005, 98, 2521–2531. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Q.; Bai, Y.; Wang, T. AO-resistant shape memory polyimide/silica composites with excellent thermal stability and mechanical properties. RSC Adv. 2015, 5, 72971–72980. [Google Scholar] [CrossRef]
- Dwivedi, S.; Sakamoto, S.; Kato, S.; Mitsumata, T.; Kaneko, T. Effects of biopolyimide molecular design on their silica hybrids thermo-mechanical, optical and electrical properties. RSC Adv. 2018, 8, 14009–14016. [Google Scholar] [CrossRef] [Green Version]
- Wahab, M.; Kim, I.; Cho, W.-J.; Ha∗, C.-S. Polyimide Based Hybrid Nanocomposites. Mol. Cryst. Liq. Cryst. 2004, 417, 127–134. [Google Scholar] [CrossRef]
- Ragosta, G.; Musto, P. Polyimide/silica hybrids via the sol-gel route: High performance materials for the new technological challenges. Express Polym. Lett. 2009, 3, 413–428. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, Y. New polyimide-silica organic-inorganic hybrids. J. Appl. Polym. Sci. 2003, 88, 2210–2214. [Google Scholar] [CrossRef]
- Al-Kandary, S.; Ali, A.A.M.; Ahmad, Z. New polyimide-silica nano-composites from the sol-gel process using organically-modified silica network structure. J. Mater. Sci. 2006, 41, 2907–2914. [Google Scholar] [CrossRef]
- Miller, A.; Berg, J. Effect of silane coupling agent adsorbate structure on adhesion performance with a polymeric matrix. Compos. Part A Appl. Sci. Manuf. 2003, 34, 327–332. [Google Scholar] [CrossRef]
- Fiore, V.; Orlando, V.; Sanfilippo, C.; Badagliacco, D.; Valenza, A. Effect of Silane Coupling Treatment on the Adhesion between Polyamide and Epoxy Based Composites Reinforced with Carbon Fibers. Fibers 2020, 8, 48. [Google Scholar] [CrossRef]
- Akhter, T.; Siddiqi, H.M.; Saeed, S.; Park, O.O.; Mun, S.C. Development of novel coatable compatibilized polyimide-modified silica nanocomposites. J. Polym. Res. 2014, 21, 459. [Google Scholar] [CrossRef]
- Akhter, T.; Park, O.O.; Siddiqi, H.M.; Saeed, S.; Saoud, K.M. An investigation of physico-chemical properties of a new polyimide–silica composites. RSC Adv. 2014, 4, 46587–46594. [Google Scholar] [CrossRef]
- Ngo, D.; Liu, H.; Chen, Z.; Kaya, H.; Zimudzi, T.J.; Gin, S.; Mahadevan, T.; Du, J.; Kim, S.H. Hydrogen bonding interactions of H2O and SiOH on a boroaluminosilicate glass corroded in aqueous solution. NPJ Mater. Degrad. 2020, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Basso, A.M.; Nicola, B.P.; Bernardo-Gusmão, K.; Pergher, S.B.C. Tunable Effect of the Calcination of the Silanol Groups of KIT-6 and SBA-15 Mesoporous Materials. Appl. Sci. 2020, 10, 970. [Google Scholar] [CrossRef] [Green Version]
- Joseph, R.; Zhang, S.; Ford, W.T. Structure and Dynamics of a Colloidal Silica−Poly(methyl methacrylate) Composite by13C and 29Si MAS NMR Spectroscopy. Macromolecules 1996, 29, 1305–1312. [Google Scholar] [CrossRef]
- Lutz, W.; Täschner, D.; Kurzhals, R.; Heidemann, D.; Hübert, C. Characterization of Silica Gels by 29Si MAS NMR and IR Spectroscopic Measurements. Z. Anorg. Allg. Chem. 2009, 635, 2191–2196. [Google Scholar] [CrossRef] [Green Version]
- Loy, D.A.; Baugher, B.M.; Baugher, C.R.; Schneider, D.A.; Rahimian, K. Substituent Effects on the Sol−Gel Chemistry of Organotrialkoxysilanes. Chem. Mater. 2000, 12, 3624–3632. [Google Scholar] [CrossRef] [Green Version]
- Loy, D.A.; Shea, K.J. Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chem. Rev. 1995, 95, 1431–1442. [Google Scholar] [CrossRef]
- Wahab, M.A.; Imae, I.; Kawakami, Y.; Ha, C.-S. Periodic Mesoporous Organosilica Materials Incorporating Various Organic Functional Groups: Synthesis, Structural Characterization, and Morphology. Chem. Mater. 2005, 17, 2165–2174. [Google Scholar] [CrossRef]
- Wahab, M.; Kim, I.; Ha, C.-S. Microstructure and properties of polyimide/poly(vinylsilsesquioxane) hybrid composite films. Polymer 2003, 44, 4705–4713. [Google Scholar] [CrossRef]
- Ahmad, Z.; Mark, J. Polyimide-ceramic hybrid composites by the sol-gel route. Chem. Mater. 2001, 13, 3320–3330. [Google Scholar] [CrossRef]
- Chen, H.; Yin, J. Synthesis and characterization of hyperbranched polyimides with good organosolubility and thermal properties based on a new triamine and conventional dianhydrides. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 3804–3814. [Google Scholar] [CrossRef]
- Park, H.B.; Kim, J.K.; Nam, S.Y.; Lee, Y.M. Imide-siloxane block copolymer/silica hybrid membranes: Preparation, characterization and gas separation properties. J. Membr. Sci. 2003, 220, 59–73. [Google Scholar] [CrossRef]
- Wahab, M.A.; Kim, I.; Ha, C.-S. Microstructure and properties of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA)-p-phenylene diamine (PDA) polyimide/poly(vinylsilsesquioxane) hybrid nanocomposite films. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 5189–5199. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Whang, W.-T. Low dielectric polyimide/poly(silsesquioxane)-like nanocomposite material. Polymer 2001, 42, 4197–4207. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Whang, W.-T. Dynamic mechanical properties of polyimide/poly(silsesquioxane)-like hybrid films. J. Appl. Polym. Sci. 2001, 81, 2500–2516. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, E.; Kwon, Y.; Cho, W.; Cho, C.; Chang, M.; Ree, M.; Chang, T.; Ha, C. Electrical properties of silica-polyimide composite dielectric thin films prepared via sol-gel reaction and thermal imidization. Synth. Met. 1997, 85, 1399–1400. [Google Scholar] [CrossRef]
- Wahab, M.A.; Mya, K.Y.; He, C. Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low-k nanocomposite films. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 5887–5896. [Google Scholar] [CrossRef]
- Wang, S.; Ahmad, Z.; Mark, J.E. Polyimide-Silica Hybrid Materials Modified by Incorporation of an Organically Substituted Alkoxysilane. Chem. Mater. 1994, 6, 943–946. [Google Scholar] [CrossRef]
- Im, J.-S.; Lee, J.-H.; An, S.-K.; Song, K.-W.; Jo, N.-J.; Lee, J.-O.; Yoshinaga, K. Preparation and properties of polyimide/silica hybrid composites based on polymer-modified colloidal silica. J. Appl. Polym. Sci. 2006, 100, 2053–2061. [Google Scholar] [CrossRef]
- Qi, H.; Wang, X.; Zhu, T.; Li, J.; Xiong, L.; Liu, F. Low Dielectric Poly(imide siloxane) Films Enabled by a Well-Defined Disiloxane-Linked Alkyl Diamine. ACS Omega 2019, 4, 22143–22151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Zhu, G.; Liu, W.; Wang, K.; Ren, F.; Fu, H.; Yan, X. Mechanical and dielectric properties of polyimide/silica nanocomposite films. Plast. Rubber Compos. 2015, 44, 435–439. [Google Scholar] [CrossRef]
- Huang, J.; Lim, P.C.; Shen, L.; Pallathadka, P.K.; Zeng, K.; He, C. Cubic silsesquioxane–polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Mater. 2005, 53, 2395–2404. [Google Scholar] [CrossRef]
Sample Code | Physical Appearance | Optical Transmittance (T%) | 5 wt% Weight Loss from TGA (°C) (Td5) |
---|---|---|---|
PI | Transparent and flexible | 88 | 576 |
PI/TSi | Opaque and flexible but rigid | 45 | 600 |
PI/TSi-GPMS25 | Opaque and flexible | 45–47 | Not done |
PI/TSi-GPMS50 | Translucent | 60 | 460 |
PI/TSi-GPMS75 | Translucent | 62 | Not done |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahab, M.A.; Karim, M.R.; Aijaz, M.O.; Salahuddin, B.; Aziz, S.; Sina, A.A.I. A Study on the Interfacial Compatibility, Microstructure and Physico-Chemical Properties of Polyimide/Organically Modified Silica Nanocomposite Membrane. Polymers 2021, 13, 1328. https://doi.org/10.3390/polym13081328
Wahab MA, Karim MR, Aijaz MO, Salahuddin B, Aziz S, Sina AAI. A Study on the Interfacial Compatibility, Microstructure and Physico-Chemical Properties of Polyimide/Organically Modified Silica Nanocomposite Membrane. Polymers. 2021; 13(8):1328. https://doi.org/10.3390/polym13081328
Chicago/Turabian StyleWahab, Md A., Mohammad R. Karim, Muhammad O. Aijaz, Bidita Salahuddin, Shazed Aziz, and Abu A. I. Sina. 2021. "A Study on the Interfacial Compatibility, Microstructure and Physico-Chemical Properties of Polyimide/Organically Modified Silica Nanocomposite Membrane" Polymers 13, no. 8: 1328. https://doi.org/10.3390/polym13081328
APA StyleWahab, M. A., Karim, M. R., Aijaz, M. O., Salahuddin, B., Aziz, S., & Sina, A. A. I. (2021). A Study on the Interfacial Compatibility, Microstructure and Physico-Chemical Properties of Polyimide/Organically Modified Silica Nanocomposite Membrane. Polymers, 13(8), 1328. https://doi.org/10.3390/polym13081328