New Polymer Inclusion Membranes in the Separation of Palladium, Zinc and Nickel Ions from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Determination of Dissociation Constants (pKa)
2.3. Liquid–Liquid Extraction Procedure (SX)
2.4. Polymer Inclusion Membrane
2.5. Transport Studies
3. Results and Discussion
3.1. Determination of Dissociation Constants (pKa)
3.2. SX of Metal Ions by 1-Alkyl-1,2,4-Triazole (1–9)
3.3. Determination of the Equilibrium Constants of SX
3.4. Transport of Pd(II), Zn(II) and Ni(II) Ions across Polymer Inclusion Membranes (PIMs)
3.4.1. The Concentration of Carrier
[Zn(H2O)6]2+ + 4L + 2A− ↔ [ZnL4]A2 + 6H2O
3.4.2. Membrane Characterization
3.4.3. The Concentration of Chloride Ions in the Feed Phase
for Ni(II) [M(H2O)6]2+ + 6Cl‾ → [MCl6]4− + 6H2O
3.5. Metal Ions Transport across PIMs
3.6. Diffusion Coefficients
3.7. Recovery of Metal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suginome, M.; Yamamoto, A.; Murakami, M. Palladium- and Nickel- Catalyzed Intramolecular Cyano-boration of Alkynes. J. Am. Chem. Soc. 2003, 125, 6358–6359. [Google Scholar] [CrossRef] [PubMed]
- Tsuru, Y.; Mochinaga, K.; Ooyagi, Y.; Foulkes, F.R. Application of vapor-deposited carbon and zinc as a substitute for palladium catalyst in the electroless plating of nickel. Surf. Coat. Technol. 2003, 169, 116–119. [Google Scholar] [CrossRef]
- Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R.Z.; Christensen, C.H.; Nørskov, J.K. Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene. Science 2008, 320, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.E.; Albiter, E.; Gracia y Jimenez, J.M.; Tiznado, H.; Romo-Herrera, J.; Zanella, R. Photocatalytic hydrogen production over titania modified by gold-metal (palladium, nickel and cobalt) catalysts. Int. J. Hydrogen Energy 2016, 41, 23287–23300. [Google Scholar] [CrossRef]
- Ruhela, R.; Singh, A.K.; Tomar, B.S.; Hubli, R.C. Separation of palladium from high level liquid waste-A review. RCS Adv. 2014, 4, 24344–24350. [Google Scholar] [CrossRef]
- Chang, L.; Cao, Y.; Fan, G.; Li, C.; Peng, W. A review of the applications of ion floatation: Wastewater treatment, mineral beneficiation and hydrometallurgy. RSC Adv. 2019, 9, 20226–20239. [Google Scholar] [CrossRef]
- Rabatho, J.P.; Tongamp, W.; Takasaki, Y.; Shibayama, A. Recovery of Pt and Pd from PGM Mine Tailings by Magnetic Separation. Int. J. Soc. Mater. Eng. Resour. 2010, 17, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.P.; Yang, F.Z.; Tian, Z.Q.; Zhou, S.M. Effects of nickel ion contents on electrodeposition, composition, structure and properties of palladium-nickel alloys. Trans. IMF 2011, 89, 249–254. [Google Scholar] [CrossRef]
- Mowafy, E.A.; Mohamed, D. Separation and recovery of palladium(II) from nitrate solutions using dithiodiglycolamide (DTDGA) derivatives as novel extractant. Desalin. Water Treat. 2017, 68, 190–198. [Google Scholar] [CrossRef]
- Khogare, B.T.; Anuse, M.A.; Piste, P.B.; Kokare, B.N. Development of a solvent extraction system with 4-heptylaminopyridine for the selective separation of palladium(II) from synthetic mixtures, catalysts and water samples. Desalin. Water Treat. 2016, 57, 21634–21644. [Google Scholar] [CrossRef]
- Najafi, A.; Kargari, A.; Soleimani, M. Extraction of palladium from aqueous wastewaters using Alamine 300 as extractant. Desalin. Water Treat. 2015, 53, 2177–2183. [Google Scholar] [CrossRef]
- Rajesh, Y.; Srinu, N.; Namrata, G.; Ramgopal, U. Preparation, characterization and Pd(II) adsorption characteristics of chitosan-AC composites from electroless plating solutions. Desalin. Water Treat. 2017, 84, 279–291. [Google Scholar] [CrossRef]
- Ghomi, A.G.; Asasian-Kolur, N.; Sharifian, S.; Golnaraghi, A. Biosorpion for sustainable recovery of precious metals from wastewater. J. Environ. Chem. Eng. 2020, 8, 103996. [Google Scholar] [CrossRef]
- Das, N. Recovery of precious metals through biosorption—A review. Hydrometallurgy 2010, 103, 180–189. [Google Scholar] [CrossRef]
- Dubey, S.; Banerjee, S.; Upadhyay, S.N.; Sharma, Y.C. Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. J. Mol. Liq. 2017, 240, 656–677. [Google Scholar] [CrossRef]
- Nakai, T.; Murakami, Y.; Sasaki, Y.; Tagashira, S. The ion-pair formation between dodecylsulfate and ammine-complexes of copper(II), nickel(II), zinc(II), palladium(II) and platinum(II), and the extraction behavior of the ammine-complexes by using sodium dodecylsulfate. Talanta 2005, 66, 45–50. [Google Scholar] [CrossRef]
- Birinci, E.; Gülfen, M.; Aydin, A.O. Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin. Hydrometallurgy 2009, 95, 15–21. [Google Scholar] [CrossRef]
- Regel-Rosocka, M.; Wisniewski, M.; Borowiak-Resterna, A.; Cieszynska, A.; Sastre, A.M. Selective extraction of palladium(II) from hydrochloric acid solutions with pyridine carboxamides and ACORGA®CLX50. Sep. Purif. Technol. 2007, 53, 337–341. [Google Scholar] [CrossRef]
- Park, Y.J.; Fray, D.J. Recovery of high purity precious metals from printed circuit boards. J. Hazard. Mat. 2009, 164, 1152–1158. [Google Scholar] [CrossRef]
- Takaharu, H.; Hiromi, H.; Toshiyasu, K. The Separation of Iron(III), Cobalt(II), Nickel(II), Copper(II), Zinc(II), Mercury(II), Lead(II), Cadmium(II), and Palladium(II) as Their SDBM (3-Mercapto-1,3-diphenyl-2-propen-1-one) Complexes by Thin Layer Chromatography on Silica Gel. Bull. Chem. Soc. Jpn. 1978, 51, 1559–1560. [Google Scholar] [CrossRef]
- Cieszynska, A.; Wisniewski, M. Selective extraction of palladium(II) from hydrochloric acid solutions with phosphonium extractants. Sep. Purif. Technol. 2011, 80, 385–389. [Google Scholar] [CrossRef]
- Papaiconomou, N.; Lee, J.-M.; Salminen, J.; von Stosch, M.; Prausnitz, J.M. Selective Extraction of Copper, Mercury, Silver, and Palladium Ions from Water Using Hydrophobic Ionic Liquids. Ind. Eng. Chem. Res. 2008, 47, 5080–5086. [Google Scholar] [CrossRef] [Green Version]
- Lenarcik, B.; Kurdziel, K.; Gabryszewski, M. Stability and structure of transition metal complexes with azoles in aqueous solution-XXII. Complexing behaviour of 1,2,4-triazole, 3-amino-1,2,4-triazole and 4-amino-1,2,4-triazole. J. Inorg. Nucl. Chem. 1980, 42, 587–592. [Google Scholar] [CrossRef]
- Gajda, B.; Plackowski, R.; Skrzypczak, A.; Bogacki, M. Facilitated Transport of Copper(II) across Polymer Inclusion Membrane with Triazole Derivatives as Carrier. Membranes 2020, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Lenarcik, B.; Rauckyte, T.; Kopkowski, A. Application of Extraction Method to the Investigation of the Stability Constants of Ni(II) Complexes with 1-alkyl-1,2,4-Triazoles by Using Several Organic Solvents. In Proceedings of the XVII International Symposium on Physicochemical Methods of Separation, Ars Separatoria 2002, Borówno, Poland, 17–20 June 2002. [Google Scholar]
- Sathish Kumar, S.; Kavitha, P.H. Synthesis and Biological Applications of Triazole Derivatives—A Review. Mini-Rev. Org. Chem. 2013, 10, 40–65. [Google Scholar] [CrossRef]
- Al-Omair, M.A.; Sayed, A.R.; Youssef, M.M. Synthesis of Novel Triazoles, Tetrazine, Thiadiazoles and Their Biological Activities. Molecules 2015, 20, 2591–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Shen, H.; Yang, M.; Xia, C.; Zhang, P. A novel D-glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki–Heck reactions and its application in the synthesis of Axitinib. Green Chem. 2015, 17, 225–230. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Tiwari, B.; Parida, B.B.; Reddy, C.R. Chiral pyrrolidine–triazole conjugate catalyst for asymmetric Michael and Aldol reactions. Tetrahedron Asymmetry 2008, 18, 495–499. [Google Scholar] [CrossRef]
- Huo, J.; Lin, C.; Liang, J. A brief minireview of poly-triazole: Alkyne and azide substrate selective, metal-catalyst expansion. Reactive and Functional. Polymers 2020, 152, 104531. [Google Scholar] [CrossRef]
- Rahmani, H.; Alaoui, K.I.; EL-Azzouzi, M.; Benhiba, F.; El-Hallaoui, A.; Rais, Z.; Taleb, M.; Saady, A.; Labriti, B.; Aouniti, A. Corrosion assessement of mild steel in acid environment using novel triazole derivative as an anti-corrosion agent: A combined experimental and quantum chemical study. Chem. Data Collect. 2019, 24, 100302. [Google Scholar] [CrossRef]
- Abd-Elaal, A.A.; Aiad, I.; Shaban, S.M.; Tawfik, S.M.; Sayed, A. Synthesis and Evaluation of Some Triazole Derivatives as Corrosion Inhibitors and Biocides. J. Surfactants Deterg. 2013, 17, 483–491. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Zhang, X.-H.; Liu, D.-Z.; Zhou, X.-Q. A study on the synthesis and photophysical performances of some pyrazole and triazole fluorescent brightening agents. Dyes Pigment. 2005, 64, 141–146. [Google Scholar] [CrossRef]
- Pobezhimova, T.P.; Korsukova, A.V.; Dorofeev, N.V.; Grabelnych, O.I. Physiological effects of triazole fungicides in plants. Proceedings of Universities. Appl. Chem. Biotechnol. 2019, 9, 461–476. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.A.; Gilley, A.; Sankhla, N.; Davis, T.D. Triazoles as plant growth regulators and stress protectants. Hortic. Rev. 2000, 24, 55–138. [Google Scholar]
- Holečková, B.; Šiviková, K.; Dianovský, J.; Galdíková, M. Effect of triazole pesticide formulation on bovine culture cells. J. Environ. Sci. Health Part B Pestic. 2013, 48, 1080–1088. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Ulewicz, M.; Pyszka, I. Application of Polymer Inclusion Membranes Doped with Alkylimidazole to Separation of Silver and Zinc Ions from Model Solutions and after Battery Leaching. Materials 2020, 13, 3103. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Pyszka, I. New polymer inclusion membrane in separation of nonferrous metal ions from aqueous solutions. Membranes 2020, 10, 385. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Pyszka, I.; Urbaniak, W. Cadmium(II) and lead(II) extraction and transport through polymer inclusion membranes with 1-alkylimidazole. Desalin. Water Treat. 2021, 214, 56–63. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Ulewicz, M. The Application of Polymer Inclusion Membranes Based on CTA with 1-alkylimidazole for the Separation of Zinc(II) and Manganese(II) Ions from Aqueous Solutions. Polymers 2019, 11, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radzyminska-Lenarcik, E.; Ulewicz, M. Polymer Inclusion Membranes (PIMs) doped with Alkylimidazole and their Application in the Separation of Non-Ferrous Metal Ions. Polymers 2019, 11, 1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radzyminska-Lenarcik, E. The influence of the alkyl chain length on extraction equilibrium of Cu(II) complexes with 1-alkylimidazole in aqueous solution/organic solvent system. Solv. Ext. Ion Exch. 2006, 25, 53–64. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E. Effect of alkyl chain length on the extraction of Cu(II) complexes with 1-alkyl-2-methylimidazole. Sep. Sci. Technol. 2007, 42, 2661–2675. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E. The influence of steric effect, alkyl chain length and donor number of solvents on the extraction of copper(II) complexes with 1-alkyl-4-methylimidazoles. Solv. Ext. Ion Exch. 2010, 28, 636–652. [Google Scholar] [CrossRef]
- Lenarcik, B.; Ojczenasz, P. Investigation of the Stability Constants of Co(II) Complexes with a Homologous Series of 1-Alkylimidazoles in Aqueous Solution by Using a Partition Method with Several Solvents. Sep. Sci. Technol. 2004, 39, 199–226. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Witt, K. The influence of alkyl chain length and steric effect on the stability constants and extractability of Co(II) complexes with 1-alkyl-2-methylimidazoles. Sep. Sci. Technol. 2015, 50, 676–682. [Google Scholar] [CrossRef]
- Lenarcik, B.; Rauckyte, T. The Influence of Alkyl Length on Extraction Equilibria of Ni(II) Complexes with 1-Alkylimidazoles in Aqueous Solution/Organic Solvent Systems. Sep. Sci. Technol. 2004, 39, 3353–3372. [Google Scholar] [CrossRef]
- Lenarcik, B.; Kierzkowska, A. The Influence of Alkyl Chain Length and Steric Effect on Extraction of Zinc(II) Complexes with 1-Alkyl-2-methylimidazoles. Solv. Ext. Ion Exch. 2006, 24, 433–445. [Google Scholar] [CrossRef]
- Lenarcik, B.; Kierzkowska, A. The Influence of Alkyl Length on Stability Constants of Zn(II) Complexes with 1-Alkylimidazoles in Aqueous Solutions and Their Partition Between Aqueous Phase and Organic Solvent. Solv. Ext. Ion Exch. 2004, 22, 449–471. [Google Scholar] [CrossRef]
- Rydberg, J.; Musakis, C.; Choppin, G.R. Principles and Practices of Solvent Extraction; M. Dekker, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Rossotti, F.J.C.; Rossotti, H. The Determination of Stability Constants; McGraw-Hill: New York, NY, USA, 1961. [Google Scholar]
- Radzyminska-Lenarcik, E.; Pyszka, I.; Ulewicz, M. Separation of Zn(II), Cr(III), and Ni(II) ions using the polymer inclusion membranes containing acetylacetone derivative as the carrier. Membranes 2020, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Danesi, P.R. Separation of Metal Species by Supported Liquid Membranes. Sep. Sci. Technol. 1984, 19, 857–894. [Google Scholar] [CrossRef]
- St John, A.M.; Cattrall, R.W.; Kolev, S.D. Determination of the initial flux of polymer inclusion membranes. Sep. Purif. Technol. 2013, 116, 41–45. [Google Scholar] [CrossRef]
- Salazar-Alvarez, G.; Bautista-Flores, A.N.; San Miguel, E.R.; Muhammed, M.; Gyves, J. Transport characterization of a PIM system used for the extraction of Pb(II) using D2EHPA as carrier. J. Membr. Sci. 2005, 250, 247–257. [Google Scholar] [CrossRef]
- Ulewicz, M.; Radzyminska-Lenarcik, E. Application of Hydrophobic Alkylimidazoles in the Separation of Non-Ferrous Metal Ions across Plasticised Membranes—A Review. Membranes 2020, 10, 331. [Google Scholar] [CrossRef]
- Ulewicz, M.; Szczygelska-Tao, J.; Biernat, J.F. Selectivity of Pb(II) transport across polymer inclusion membranes doped with imidazole azothiacrown ethers. J. Membr. Sci. 2009, 344, 32–38. [Google Scholar] [CrossRef]
- Wolf, J.R.; Strieder, W. Toruosities for a random fiber bed: Overlapping, parallel cylinders of several radii. J. Membr. Sci. 1990, 49, 103–115. [Google Scholar] [CrossRef]
- Mohdee, V.; Ramakul, P.; Phatanasri, S.; Pancharoen, U. A numerical and experimental investigation on the selective separation of Pd (II) from wastewater using Aliquat 336 via hollow fiber supported liquid membrane. J. Environ. Chem. Eng. 2020, 8, 104234. [Google Scholar] [CrossRef]
- Regel-Rosocka, M.; Rzelewska, M.; Baczynska, M.; Janus, M.; Wisniewski, M. Removal of palladium(II) from aqueous chloride solutions with cyphos phosphonium ionic liquids as metal ion carriers for liquid-liquid extraction and transport across polymer inclusion membranes. Physicochem. Probl. Miner. Process. 2015, 51, 621–631. [Google Scholar] [CrossRef]
No. | R | Compound | Boiling Point, °C, at Pressure 1 hPa | Melting Point, °C | |
1 | -C5H11 | 1-pentyl-1,2,4-triazole | 173–175 | ||
2 | -C6H13 | 1-hexyl-1,2,4-triazole | 179–181 | ||
3 | -C7H15 | 1-heptyl-1,2,4-triazole | 182–184 | ||
4 | -C8H17 | 1-octyl-1,2,4-triazole | 185–188 | ||
5 | -C9H19 | 1-nonyl-1,2,4-triazole | 201–203 | ||
6 | -C10H21 | 1-decyl-1,2,4-triazole | 216–218 | ||
7 | -C12H25 | 1-dodecyl-1,2,4-triazole | 239–241 | ||
8 | -C14H29 | 1-tetradecyl-1,2,4-triazole | - | 48–49 | |
9 | -C16H33 | 1-hexadecyl-1,2,4-triazole | - | 52–53 |
Ligand | No. | pKa,1 | pKa,2 |
---|---|---|---|
1,2,4-triazole [20] | 2.5 | 9.89 | |
1-pentyl-1,2,4-triazole | 1 | 2.65 | 9.89 |
1-hexyl-1,2,4-triazole | 2 | 2.68 | 9.94 |
1-heptyl-1,2,4-triazole | 3 | 2.7 | 9.98 |
1-octyl-1,2,4-triazole | 4 | 2.72 | 10.05 |
1-nonyl-1,2,4-triazole | 5 | 2.73 | 10.06 |
1-decyl-1,2,4-triazole | 6 | 2.75 | 10.06 |
1-dodecyl-1,2,4-triazole | 7 | 2.78 | 10.08 |
1-tetradecyl-1,2,4-triazole | 8 | 2.81 | 10.1 |
1-hexacedyl-1,2,4-triazole | 9 | 2.85 | 10.14 |
Ligand | Metal Ions | pH1/2 | Emax, % |
---|---|---|---|
1 | Pd(II) | 2.30 | 67 |
Zn(II) | 3.60 | 52 | |
Ni(II) | 3.90 | 14 | |
2 | Pd(II) | 1.83 | 68 |
Zn(II) | 3.34 | 53 | |
Ni(II) | 3.75 | 18 | |
3 | Pd(II) | 1.59 | 71 |
Zn(II) | 3.15 | 55 | |
Ni(II) | 3.62 | 22 | |
4 | Pd(II) | 1.40 | 74 |
Zn(II) | 2.62 | 58 | |
Ni(II) | 3.44 | 25 | |
5 | Pd(II) | 1.26 | 77 |
Zn(II) | 2.33 | 60 | |
Ni(II) | 3.25 | 27 | |
6 | Pd(II) | 1.14 | 80 |
Zn(II) | 1.90 | 63 | |
Ni(II) | 2.87 | 29 | |
7 | Pd(II) | 1.05 | 82 |
Zn(II) | 1.64 | 66 | |
Ni(II) | 2.75 | 32 | |
8 | Pd(II) | 0.95 | 86 |
Zn(II) | 1.38 | 70 | |
Ni(II) | 2.65 | 36 | |
9 | Pd(II) | 0.80 | 89 |
Zn(II) | 1.10 | 74 | |
Ni(II) | 2.57 | 42 |
Ligand | Metal Ion | Stability Constants, βn | Partition Constants Pn | ||
---|---|---|---|---|---|
log β1 | log β2 | log P1 | log P2 | ||
1,2,4-triazole | Ni(II) [23] | 5.96 | 10.54 | 4.81 | 6.17 |
Zn(II) [23] | 5.03 | 8.8 | 3.79 | 5.86 | |
1-pentyl-1,2,4-triazole | Pd(II) | 4.72 | 9.32 | 2.46 | 5.23 |
1 | Ni(II) | 2.15 | 5.11 | 1.05 | 2.74 |
Zn(II) | 3.42 | 7.43 | 1.88 | 3.56 | |
1-hexyl-1,2,4-triazole | Pd(II) | 4.78 | 9.43 | 2.54 | 5.41 |
2 | Ni(II) | 2.26 | 5.37 | 1.09 | 2.84 |
Zn(II) | 3.5 | 7.6 | 1.9 | 3.6 | |
1-heptyl-1,2,4-triazole | Pd(II) | 4.83 | 9.52 | 2.61 | 5.53 |
3 | Ni(II) | 2.29 | 5.44 | 1.12 | 2.92 |
Zn(II) | 3.55 | 7.71 | 2.06 | 3.9 | |
1- octyl-1,2,4-triazole | Pd(II) | 4.89 | 9.64 | 2.76 | 5.96 |
4 | Ni(II) | 2.35 | 5.58 | 1.14 | 2.97 |
Zn(II) | 3.58 | 7.78 | 2.13 | 4.03 | |
1-nonyl-1,2,4-triazole | Pd(II) | 4.92 | 9.71 | 2.82 | 6.09 |
5 | Ni(II) | 2.38 | 5.66 | 1.18 | 3.08 |
Zn(II) | 3.61 | 7.84 | 2.19 | 4.15 | |
1-decyl-1,2,4-triazole | Pd(II) | 4.95 | 9.76 | 2.88 | 6.22 |
6 | Ni(II) | 2.41 | 5.72 | 1.21 | 3.15 |
Zn(II) | 3.69 | 8.02 | 2.24 | 4.24 | |
1-dodecyl-1,2,4-triazole | Pd(II) | 5.01 | 9.88 | 2.95 | 6.31 |
7 | Ni(II) | 2.52 | 6 | 1.28 | 3.34 |
Zn(II) | 3.74 | 8.13 | 2.27 | 4.3 | |
1-tetradecyl-1,2,4-triazole | Pd(II) | 5.06 | 9.98 | 3.12 | 6.37 |
8 | Ni(II) | 2.63 | 6.25 | 1.32 | 3.44 |
Zn(II) | 3.88 | 8.43 | 2.35 | 4.45 | |
1-hexacedyl-1,2,4-triazole | Pd(II) | 5.12 | 10.1 | 3.39 | 6.92 |
9 | Ni(II) | 2.67 | 6.35 | 1.32 | 3.48 |
Zn(II) | 3.94 | 8.56 | 2.38 | 4.51 |
Concentration of Carrier, mol/dm3 | Metal Ions | Initial Flux, J0 µmol/m2∙s | RF after 24 h, % |
---|---|---|---|
0.25 | Pd(II) | 0.35 | 40.5 |
Zn(II) | 0.04 | 5.6 | |
Ni(II) | 0.01 | 1.3 | |
0.50 | Pd(II) | 2.95 | 94.7 |
Zn(II) | 0.73 | 38.6 | |
Ni(II) | 0.22 | 14.5 | |
1.00 | Pd(II) | 2.65 | 89.3 |
Zn(II) | 0.85 | 44.4 | |
Ni(II) | 0.25 | 18.1 | |
1.50 | Pd(II) | 2.41 | 78.2 |
Zn(II) | 1.08 | 47.3 | |
Ni(II) | 0.34 | 28.5 |
Polymer Inclusion Membranes with Alkyl-Triazole (1–9) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Carrier | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Roughness, nm | 4.23 | 4.71 | 5.01 | 5.25 | 6.30 | 8.39 | 8.41 | 8.56 | 8.82 |
Average thickness, μm | 30 | 29 | 32 | 29 | 32 | 33 | 31 | 32 | 33 |
Concentration of Chloride Ions, mol/dm3 | Metal Ions | Initial Flux, J0 µmol/m2∙s | Order and Separation Coefficient SPd(II)/M(II) |
---|---|---|---|
- | Pd(II) | 2.95 | Pd(II) > Zn(II) > Ni(II) 4.0 13.4 |
Zn(II) | 0.73 | ||
Ni(II) | 0.22 | ||
0.5 | Pd(II) | 5.78 | Pd(II) > Zn(II) > Ni(II) 2.2 5.4 |
Zn(II) | 2.64 | ||
Ni(II) | 1.02 | ||
1.0 | Pd(II) | 7.67 | Pd(II) > Zn(II) > Ni(II) 1.5 6.1 |
Zn(II) | 5.19 | ||
Ni(II) | 1.26 |
Carrier | Metal Ions | J0, μmol/m2·s | Selectivity Coefficient SPd(II)/M(II) |
---|---|---|---|
1 | Pd(II) | 2.95 | Pd(II) > Zn(II) > Ni(II) 4.0 13.4 |
Zn(II) | 0.73 | ||
Ni(II) | 0.22 | ||
2 | Pd(II) | 3.17 | Pd(II) > Zn(II) > Ni(II) 3.5 11.7 |
Zn(II) | 0.91 | ||
Ni(II) | 0.27 | ||
3 | Pd(II) | 3.58 | Pd(II) > Zn(II) > Ni(II) 3.2 10.5 |
Zn(II) | 1.12 | ||
Ni(II) | 0.34 | ||
4 | Pd(II) | 3.75 | Pd(II) > Zn(II) > Ni(II) 2.9 9.9 |
Zn(II) | 1.31 | ||
Ni(II) | 0.38 | ||
5 | Pd(II) | 4.09 | Pd(II) > Zn(II) > Ni(II) 2.6 9.3 |
Zn(II) | 1.56 | ||
Ni(II) | 0.44 | ||
6 | Pd(II) | 4.43 | Pd(II) > Zn(II) > Ni(II) 2.5 8.7 |
Zn(II) | 1.77 | ||
Ni(II) | 0.51 | ||
7 | Pd(II) | 4.68 | Pd(II) > Zn(II) > Ni(II) 2.3 8.2 |
Zn(II) | 2.05 | ||
Ni(II) | 0.57 | ||
8 | Pd(II) | 4.92 | Pd(II) > Zn(II) > Ni(II) 2.0 7.5 |
Zn(II) | 2.47 | ||
Ni(II) | 0.66 | ||
9 | Pd(II) | 5.36 | Pd(II) > Zn(II) > Ni(II) 1.9 6.5 |
Zn(II) | 2.81 | ||
Ni(II) | 0.82 |
Carrier | Metal Ion | Δo, s/m | Do, cm2/s | Do,n, cm2/s |
---|---|---|---|---|
1 | Pd(II) | 124.08 | 2.38 × 10−7 | 4.53 × 10−8 |
Zn(II) | 195.83 | 4.21 × 10−8 | 8.02 × 10−9 | |
Ni(II) | 1416.27 | 1.47 × 10−11 | 2.80 × 10−12 | |
9 | Pd(II) | 136.49 | 2.64 × 10−7 | 6.31 × 10−8 |
Zn(II) | 204.16 | 5.96 × 10−8 | 1.42 × 10−8 | |
Ni(II) | 1483.21 | 2.02 × 10−11 | 4.83 × 10−12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzyminska-Lenarcik, E.; Pyszka, I.; Urbaniak, W. New Polymer Inclusion Membranes in the Separation of Palladium, Zinc and Nickel Ions from Aqueous Solutions. Polymers 2021, 13, 1424. https://doi.org/10.3390/polym13091424
Radzyminska-Lenarcik E, Pyszka I, Urbaniak W. New Polymer Inclusion Membranes in the Separation of Palladium, Zinc and Nickel Ions from Aqueous Solutions. Polymers. 2021; 13(9):1424. https://doi.org/10.3390/polym13091424
Chicago/Turabian StyleRadzyminska-Lenarcik, Elżbieta, Ilona Pyszka, and Wlodzimierz Urbaniak. 2021. "New Polymer Inclusion Membranes in the Separation of Palladium, Zinc and Nickel Ions from Aqueous Solutions" Polymers 13, no. 9: 1424. https://doi.org/10.3390/polym13091424
APA StyleRadzyminska-Lenarcik, E., Pyszka, I., & Urbaniak, W. (2021). New Polymer Inclusion Membranes in the Separation of Palladium, Zinc and Nickel Ions from Aqueous Solutions. Polymers, 13(9), 1424. https://doi.org/10.3390/polym13091424